10.标题:油漆面积
X星球的一批考古机器人正在一片废墟上考古。
该区域的地面坚硬如石、平整如镜。
管理人员为方便,建立了标准的直角坐标系。
每个机器人都各有特长、身怀绝技。它们感兴趣的内容也不相同。
经过各种测量,每个机器人都会报告一个或多个矩形区域,作为优先考古的区域。
矩形的表示格式为(x1,y1,x2,y2),代表矩形的两个对角点坐标。
为了醒目,总部要求对所有机器人选中的矩形区域涂黄色油漆。
小明并不需要当油漆工,只是他需要计算一下,一共要耗费多少油漆。
其实这也不难,只要算出所有矩形覆盖的区域一共有多大面积就可以了。
注意,各个矩形间可能重叠。
本题的输入为若干矩形,要求输出其覆盖的总面积。
输入格式:
第一行,一个整数n,表示有多少个矩形(1<=n<10000)
接下来的n行,每行有4个整数x1 y1 x2 y2,空格分开,表示矩形的两个对角顶点坐标。
(0<= x1,y1,x2,y2 <=10000)
输出格式:
一行一个整数,表示矩形覆盖的总面积。
例如,
输入:
3
1 5 10 10
3 1 20 20
2 7 15 17
程序应该输出:
340
再例如,
输入:
3
5 2 10 6
2 7 12 10
8 1 15 15
程序应该输出:
128
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
把重复点去掉,然后统计出点的个数,假设点的个数有x个,那么一共有x-1个区间。
这时候对每个区间进行维护,每开始和结束一组点,就对该组点包含的区间进行维护。
用扫描线的思想按高度排序后从下往上扫
#include<bits/stdc++.h>
using namespace std;
int X[20005];
int n;
struct Lines{
int x1,x2,h,f;
}lines[20000];
struct segtree{
int l,r,cnt,len;
}tree[4*20000];
bool compare(Lines &a,Lines &b){
return a.h<b.h;
}
void buildtree(int o,int pl,int pr){
tree[o].l=pl;
tree[o].r=pr;
tree[o].cnt=tree[o].len=0;
if(pl==pr){
return ;
}
int mid=(pl+pr)>>1;
buildtree(o*2,pl,mid);
buildtree(o*2+1,mid+1,pr);
}
void updatelength(int o, int tl, int tr) {
if (tree[o].cnt > 0) {
tree[o].len = X[tr] - X[tl - 1];//将区间树上的端点(序号)代入到X中求得二维坐标上的实际横坐标
} else if (tl == tr) {
tree[o].len = 0;
} else {//负数
tree[o].len = tree[o*2].len + tree[o*2+1].len;
}
}
void update(int o,int pl,int pr,int value){
int lchild=o*2;
int rchild=o*2+1;
if(pl<=tree[o].l && pr>=tree[o].r){
tree[o].cnt+=value;
updatelength(o,tree[o].l,tree[o].r);
return ;
}
int mid=(tree[o].l+tree[o].r)>>1;
if(pl<=mid) update(lchild,pl,mid,value);
if(pr>mid) update(rchild,mid+1,pr,value);
updatelength(o,tree[o].l,tree[o].r);
}
int unique(int *x){
int index=0;
for(int i=1;i<=2*n-1;i++){
if(x[i]==x[index])
continue;
else{
index++;
x[index]=x[i];
}
}
return index;
}
int binsearch(int a,int X_end){
int l=0,r=X_end;
while(l<r){
int mid=(l+r)/2;
if(X[mid]==a) return mid;
else if(X[mid]<a)
l=mid+1;
else
r=mid;
}
return l;
}
int main(){
scanf("%d",&n);
int x1,y1,x2,y2;
int index=0;
int pl,pr;
int ans=0;
for(int i=0;i<n;i++)
{
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
X[index]=x1;
lines[index].x1=x1;
lines[index].x2=x2;
lines[index].h=y1;
lines[index].f=1;
index++;
X[index]=x2;
lines[index].x1=x1;
lines[index].x2=x2;
lines[index].h=y2;
lines[index].f=-1;
index++;
}
sort(X,X+index);
sort(lines,lines+index,compare);
int X_end=unique(X);
buildtree(1,1,X_end);
for(int i=0;i<index-1;i++){
pl=binsearch(lines[i].x1,X_end);
pr=binsearch(lines[i].x2,X_end);
update(1,pl+1,pr,lines[i].f);
ans+=tree[1].len*(lines[i+1].h-lines[i].h);
}
printf("\n%d",ans);
}