常见二次曲面3D图像绘制,包含不同截面、整体;
下面图中 红色:x轴 绿色:y轴 蓝色:z轴
函数图像生成软件:Desmos | 图形计算器
3D 计算器 - GeoGebra【强烈推荐】
目录
一、空间曲面
1.二次曲面
(1)椭圆抛物面&旋转抛物面
(a)椭圆:S=πab
(b)椭圆抛物面:
(3)旋转抛物面(常考)
(2)椭圆锥面&圆锥面
1)椭圆锥面
2)圆锥面
(3)椭球面&球面
1)椭球面
上述三张图可以发现:当只出现两个坐标(xy、yz、xz时),就在两个坐标构成的平面画椭圆,然后没有哪个坐标,图形就沿着那个轴无限延伸。
2)球面(常考)
二、空间曲线的切线和法平面问题
求曲线(相当于是球面和平面的交线)
{eq1: x^(2)+y^(2)+z^(2)=6 (球面)
eq2: x+y+z=0(平面) }在(1,-2,1)处的切线和法平面方程
E(1,-2,1)向量ED为 x^(2)+y^(2)+z^(2)=6 在E点的法向量n1
向量EF为 x+y+z=0 在E点的法向量n2
由于曲线在E点处的切向量EG肯定既垂直n1,又垂直n2,所以满足向量叉乘的几何意义
则有:EG=向量n1×向量n2
图示能够让我们更好的理解此类题目,为何可以如下解题
(1)求平面、曲面的法向量n1、n2;
(2)求n1与n2的叉乘即为曲线在该点处的切向量;
(3)根据切向量写,用对称式写切线方程和法平面方程。
这种方法非常便利,甚至不需要知道平面和曲面的交线方程是什么,只算向量就能算出,前提是:理清楚法向量与切向量关系;写对对称式切线方程和法平面方程。
三、二重积分的计算
1.被积函数带有绝对值型,在某区域上求二重积分
这种题型一定要考虑二重积分的几何意义:即
1.当z=f(x,y)>=0时,z曲面在xoy平面上方(如图1),其在区域D上的二重积分,代表以D为底,以曲面z为曲顶的曲顶柱体体积;
2.当z=f(x,y)<0时,z曲面在xoy平面下方(如图2),其在区域D上的二重积分=-(代表以D为底,以曲面z为曲顶的曲顶柱体体积)【体积的负值】;
3.当z=f(x,y)有正有负,即既有在上方也有在下方的部分,如图3
则其在区域D上的二重积分=V上-V下(这很关键,爱出考点)
如图1:为第3种,区域D的方程为:x^(2)+y^(2)=4,该曲面在区域D上有+有-,既有在xoy平面上方的曲面,也有在xoy平面下方的曲面:
在D区域上的值如何求呢?
0.首先,读懂几何意义,本质是计算以D为底,以|f(x,y)|为曲顶的曲顶主体体积。由于f(x,y)有上有下,所以该体积应该是,V总=f(x,y)上部的体积+下部翻折上来的体积V下
而=V上-V下,V上=+V下
则=+2V下
1.其次,类比一元定积分,由于有“| |”,说明f(x,y)在区域D的不同区域上表达式不同,所以一定要分区域进行计算,如何分?就找临界:令f(x,y)=0,看范围
2.f(x,y)下方的重积分好计算,不过要注意下方的重积分是负的,求体积V下一定要添负号
下面依次展示1)~4)的三维图像,以给出更直观的感受。
1)z=|f(x,y)|
2)z=f(x,y)
3)z=f(x,y)>=0
4)z=f(x,y)<0
1)
2)
黄色区域内f(x,y)为+,红色区域内f(x,y)为-
3)
4)