空间曲面构造及其方程

1.旋转单叶双曲面

 旋转单叶双曲面是直纹面,它的构造有多种方式,先看其中一种:

 设直线的参数方程为:

 \left\{\begin{matrix} x=1\\ y=t \ \\ z=2t \end{matrix}\right.\quad t> -5 \wedge t<5

则通过geogebra命令

b=Curve(1,t,2t,t,-5,5)

绘制出的直线如图所示,它将作为旋转单叶双曲面的"直纹".

   

通过命令:

a=Surface(b,m,zAxis)

绘制曲面,命令表示直线b围绕z轴,旋转m弧度.

当m在[0,2\pi]变化时,可以看到绘制出的曲线如下图所,性感小蛮腰:

同样的曲面可以由另一种方式构造,设xOz坐标面上的双曲线

\frac{x^2}{a^2}-\frac{z^2}{c^2}=1

z轴旋转一周,生成的曲面方程为:

\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1

例如,对于上面的直纹面动图,当t=0时候,直线经过

(1,0,0)

代入曲面方程,得到

a=1

x^2+y^2-\frac{z^2}{c^2}=1

所以,如果我们再得到曲面上的一个点,就可以算出c.

令参数方程t=1, 得到曲面经过的另一个点(1,1,2),代入曲面方程:

1+1-\frac{4}{c^2}=1

得到c=2

所以最终的曲面方程为:

x^2+y^2-\frac{z^2}{4}=1

绘制出来,可以看到它和上面两种方式绘制的直纹面完全重合.

根据计算得到的曲面方程,第二种构造方式:

\frac{x^2}{1}-\frac{z^2}{4}=1,y=0

围绕z轴旋转,得到同一个直纹面的第二种构造方式:

大家熟悉的广州塔,就是一个旋转单叶双曲面,它是一个直纹面,在建筑时不需要弯曲钢筋,而是将其斜向排列即可,证据如下图所示,每个钢梁都是直的:

寻找规律,是不是和上面第一幅动图的绘制i过程很像?环绕的每根柱子都是直柱。

火力发电厂的冷却塔,也是做成了单叶双曲面,目的是最大利用空气流动来提高冷却的效率。

大屯发电厂外景,冷却塔主题。

机械中的应用

设计转动轴不互相平行的转动轴:

2.马鞍面

经典的马鞍面要属方程

z=xy

表示的双曲抛物面了,它的图形是下面这个样子的:

它也是一个直纹面,直接看可能看不出来,我们可以先找一些特殊位置,比如坐标轴,坐标轴是直的,看上去也再平面上,俯视图如下:

实际上,如果用法向量分别为(0,1,0)和(1,0,0)的平面去截曲面,得到的截线即是直线:

可以试着推一下截线的方程:

对于法向量\vec{n}=[0,1,0],通过一点(x_0, y_0, z_0)

根据点法式得到平面方程为:

0\cdot (x-x_0)+1\cdot (y-y_0)+0\cdot(z-z_0)=0

也就是平面

y=y_0

它与x轴的交点是

[0,y_0,0]

联立

\left\{\begin{matrix} z=xy\\ y=y_0 \end{matrix}\right.=>\left\{\begin{matrix} x=t\\ y=y_0\\ z=y_0t \end{matrix}\right.

所以,直线为经过[0,y_0,0],且方向向量为:[1,0,y_0]的直线。

使用命令

a=Curve(t,n,n t,t,-10,10)

绘制直线,并让直线动起来,观察扫出区域的形状:

对于法向量\vec{n}=[1,0,0],通过一点(x_0, y_0, z_0)

根据点法式得到平面方程为:

1\cdot (x-x_0)+0\cdot (y-y_0)+0\cdot(z-z_0)=0

也就是平面

x=x_0

它与x轴的交点是

[x_0,0,0]

联立

\left\{\begin{matrix} z=xy\\ x=x_0 \end{matrix}\right.=>\left\{\begin{matrix} x=x_0\\ y=t\\ z=x_0t \end{matrix}\right.

所以,直线为经过[x_0,0,0],且方向向量为:[0,1,x_0]的直线。

a=Curve(t,n,n t,t,-10,10)

两根母线一起绘制,图形更漂亮:

第三种构造方式:

直线f通过z轴并平行于绿色的y轴,动点C位于原点,初始状态如下图,连线CD垂直于翼面直线l和xAxis的方向平面。

在上图的初始状态下,让动点c,d同时开始运动,扫过的区域构成马鞍面:

为了把马鞍面的形状讲透,我们反过来,看实际的马鞍面上是否找到上图所示的两条异面直线,很好找,看下图:

这样的运动方式,两条动直线总有互相垂直的时刻。

我们把垂直时刻的位置抓出来,此时两条互相垂直的异面直线都是马鞍面上的直纹。它们的方向向量分别是(0,-0.71,0.71)(0,-0.71,-0.71)

构造两条异面直线之间的公垂线,让它动起来:

动线段扫除的轨迹完全贴合原来的马鞍面,所以可以看出,互相垂直的异面直线方式构造马鞍面也是可以的。

受到神经网络里面经常用的sigmoid激活函数的启发,想到另一种构造类马鞍面的方式:

sigmoid函数的图形如下:

稍微修改一下,将其值域变为[-\pi/2, \pi/2],函数为:

f(x)=\pi(\frac{1}{1+e^{-x}}-\frac{1}{2})

在三维空间中,构造两个点:

A(a, 0, 0)

B(a, cos\bigg[\pi(\frac{1}{1+e^{-x}}-\frac{1}{2})\bigg], sin[\pi(\frac{1}{1+e^{-x}}-\frac{1}{2})\bigg])

构造直线AB, 则AB为从负无穷处到正无穷处旋转180度的直线,它扫过的轨迹非常像马鞍面,究竟是不是我不知道,需要证明。

马鞍面学名叫做双曲抛物面,在经济学中有很重要的应用。

直纹面方程:

直纹面(单叶双曲面)的方程通项公式为:

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1

绘制出来是这个样子:

和直线的关系,对式子进行变形:

\frac{x^2}{a^2}-\frac{z^2}{c^2}=1-\frac{y^2}{b^2}

(\frac{x}{a}+\frac{z}{c})(\frac{x}{a}-\frac{z}{c})=(1+\frac{y}{b})(1-\frac{y}{b})

\frac{\frac{x}{a}+\frac{z}{c}}{1+\frac{y}{b}}=\frac{1-\frac{y}{b}}{ \frac{x}{a}-\frac{z}{c}}=\lambda

所以,可以分解为两个一次曲面:

\left\{\begin{matrix} \frac{x}{a}+\frac{z}{c} = \lambda (1+\frac{y}{b})\\ \\ \\ \\ 1-\frac{y}{b}=\lambda(\frac{x}{a}-\frac{z}{c}) \end{matrix}\right.

一次曲面是平面,两个方程的意思就是两个平面的交线:

3:椭球面

xOz面上的椭圆

\frac{x^2}{a^2}+\frac{z^2}{c^2}=1

z轴旋转,其方程为:

\frac{x^2+y^2}{a^2}+\frac{z^2}{c^2}=1

再把旋转球面沿着y轴方向伸缩

\frac{b}{a}

倍,便得到椭球方程

\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1

高斯绝妙定理

为什么冷却塔的形状是双曲面?这就和数学家高斯提出的绝妙定理有关了,我们直到,一张纸可以卷成一个圆柱桶,却不可以变成一个球或者半球,这是因为不论纸张还是圆柱体,它的最凸路线和最凹路线的曲率相乘都是0.

K=k_1\cdot k_2

这个曲率K就叫做高斯曲率,对于圆通来说,分别为直线和圆,直线的曲率为0,所以高斯曲率为0,而展平的纸张都是直线,高斯曲率也为0.所以,纸张的形态可以在圆柱桶和平面之间变化。

但是对于球面来说,无论怎样,K1,和K2都不为0,它的高斯曲率为正的,一个高斯曲率为0的面是不可能不经过撕裂,压缩而变化的。所以,球的形态比较固定,不会轻易变化。所以高斯曲率不为0的面具有较强的结构强度和抗变形能力,可以有效避免风力影响。而之所以采用双曲面,是因为它是直纹面,以及具有较好的抗压能力,符合混凝土受力特性。

牟合方盖


结束!

  • 16
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值