[4_3_buylow] Non-duplicate longest decreasing sequences

Buy Low, Buy Lower

The advice to "buy low" is half the formula to success in the stock market. But to be considered a great investor you must also follow this problems' advice:

"Buy low, buy lower"

That is, each time you buy a stock, you must purchase more at a lower price than the previous time you bought it. The more times you buy at a lower price than before, the better! Your goal is to see how many times you can continue purchasing at ever lower prices.

You will be given the daily selling prices of a stock over a period of time. You can choose to buy stock on any of the days. Each time you choose to buy, the price must be lower than the previous time you bought stock. Write a program which identifies which days you should buy stock in order to maximize the number of times you buy.

By way of example, suppose on successive days stock is selling like this:

Day   1  2  3  4  5  6  7  8  9 10 11 12
Price 68 69 54 64 68 64 70 67 78 62 98 87

In the example above, the best investor (by this problem, anyway) can buy at most four times if they purchase at a lower price each time. One four day sequence (there might be others) of acceptable buys is:

 
Day    2  5  6 10
Price 69 68 64 62

PROGRAM NAME: buylow

INPUT FORMAT

Line 1:N (1 <= N <= 5000), the number of days for which stock prices are available.
Line 2..etc:A series of N positive space-separated integers (which may require more than one line of data) that tell the price for that day. The integers will fit into 32 bits quite nicely.

SAMPLE INPUT (file buylow.in)

12
68 69 54 64 68 64 70 67
78 62 98 87

OUTPUT FORMAT

Two integers on a single line:

  • the length of the longest sequence of decreasing prices
  • the number of sequences that have this length

In counting the number of solutions, two potential solutions are considered the same (and would only count as one solution) if they repeat the same string of decreasing prices, that is, if they "look the same" when the successive prices are compared. Thus, two different sequence of "buy" days could produce the same string of decreasing prices and be counted as only a single solution.

SAMPLE OUTPUT (file buylow.out)

4 2










Dynamic Programming + Avoid Duplicate ( http://www.nocow.cn/index.php/USACO/buylow ) + Big number
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <set>
#include <string>
#include <vector>

using namespace std;

const int NUM = 5001;

const int MAXLEN = 100;

class BigInteger {
public:
        int len, s[MAXLEN];

        BigInteger() { (*this) = 0; };
        BigInteger(long long inte) { (*this) = inte; };

        friend ostream& operator<<(ostream &cout, const BigInteger &x);

        BigInteger operator=(long long inte);
        BigInteger operator+(const BigInteger &b);
        BigInteger operator-(const BigInteger &b);
        BigInteger operator*(const BigInteger &b);
        BigInteger operator/(const BigInteger &b);
        int compare(const BigInteger &b);
};

ostream& operator<<(ostream &cout, const BigInteger &x) {
        for (int i = x.len; i >= 1; --i)
                cout << x.s[i];
        return cout;
}

BigInteger BigInteger::operator=(long long inte) {
        if (inte == 0) {
                len = 1;
                s[1] = 0;
                return (*this);
        };
        for (len = 0; inte > 0; ) {
                s[++len] = inte % 10;
                inte /= 10;
        };
        return (*this);
}

BigInteger BigInteger::operator+(const BigInteger &b) {
        int i;
        BigInteger c;
        c.s[1] = 0;
        for (i = 1; i <= len || i <= b.len || c.s[i]; i++) {
                if (i <= len) c.s[i] += s[i];
                if (i <= b.len) c.s[i] += b.s[i];
                c.s[i+1] = c.s[i] / 10;
                c.s[i] %= 10;
        }
        c.len = i - 1;
        if (c.len == 0) c.len=1;
        return c;
}

BigInteger BigInteger::operator-(const BigInteger &b) {
        int i, j;
        BigInteger c;
        for (i = 1, j = 0; i <= len; ++i) {
                c.s[i] = s[i] - j;
                if (i <= b.len) c.s[i] -= b.s[i];
                if (c.s[i] < 0) {
                        j = 1;
                        c.s[i] += 10;
                } else {
                        j = 0;
                }
        }
        c.len = len;
        while (c.len > 1 && !c.s[c.len])
                --c.len;
        return c;
}

BigInteger BigInteger::operator*(const BigInteger &b)  {
        int i ,j;
        BigInteger c;
        c.len = len + b.len;
        for (i = 1; i <= c.len; ++i) c.s[i] = 0;
        for (i = 1; i <= len ; ++i)
                for (j = 1; j <= b.len ; ++j)
                        c.s[i + j - 1] += s[i] * b.s[j];
        for (i = 1; i < c.len; ++i) {
                c.s[i + 1] += c.s[i] / 10;
                c.s[i] %= 10;
        }
        while(c.s[i]) {
                c.s[i + 1] = c.s[i] / 10;
                c.s[i] %= 10;
                ++i;
        }
        while(i >1 && !c.s[i] ) --i;
        c.len = i;
        return c;
}

BigInteger BigInteger::operator/(const BigInteger &b) {
        int i, j;
        BigInteger d(0), c;
        for (i = len; i > 0; --i) {
                if (!(d.len == 1 && d.s[1] == 0)) {
                        for (j = d.len; j > 0; --j)
                                d.s[j + 1] = d.s[j];
                        ++d.len;
                }
                d.s[1] = s[i];
                c.s[i] = 0;
                while((j = d.compare(b)) >= 0) {
                        d = d - b;
                        ++c.s[i];
                        if (j == 0) break;
                }
        }
        c.len = len;
        while((c.len > 1) && (c.s[c.len] == 0))
                --c.len;
        return c;
}

int BigInteger::compare(const BigInteger &y) {
        if (len > y.len) return 1;
        if (len < y.len) return -1;
        int i = len;
        while ((i > 1) && (s[i] == y.s[i]))
                --i;
        return s[i] - y.s[i];
}

BigInteger cnt[NUM];

int main() {
        ifstream fin("buylow.in");
        int n, a[NUM];
        fin >> n;
        for (int i = 0; i < n; ++i)
                fin >> a[i];
        a[n++] = 0;
        fin.close();

        int dp[NUM] = {1};
        for (int i = 0; i < n; ++i) cnt[i] = 1;
        int next[NUM] = {0};
        for (int i = 0; i < n; ++i) {
                int j = i + 1;
                while (j < n) {
                        if (a[i] == a[j]) break;
                        ++j;
                }
                if (j < n) next[i] = j;
        }
        for (int i = 1; i < n; ++i) {
                int maxdp = 0;
                for (int j = 0; j < i; ++j)
                        if ((next[j] == 0 || next[j] > i) && a[i] < a[j]) {
                                if (dp[j] > maxdp) {
                                        maxdp = dp[j];
                                        cnt[i] = cnt[j];
                                } else if (dp[j] == maxdp) {
                                        cnt[i] = cnt[i] + cnt[j];
                                }
                        }
                dp[i] = maxdp + 1;
        }

        ofstream fout("buylow.out");
        fout << (dp[n - 1] - 1) << ' ' << cnt[n - 1] << endl;
        fout.close();

        //system("pause");
        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值