高等代数--线性变换

高等代数–线性变换

声明: 本篇文章内容主要对《高等代数》第三版第七章内容的总结,复习
说明:这块的定理看起来是哪个意思,但是证明起来还是比较困难的,只有真的理解它的证明,明白每个定理在这块真正的含义,在整章节这个体系中的作用,才能更好的运用他们。

线性变换的定义

性质: 线性空间V到自身的映射通常称为V的一个变换
在这里插入图片描述
即线性变换保持向量的加法和数量乘法。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.线性变换把线性相关的向量组变成线性相关的向量组.
4.同构还可以把线性无关的向量组变成线性无关的向量组。

线性变换的运算

注意:
1.有限个线性变换的乘积还是线性变换。
2.线性变换的乘积也是线性变换,
乘积一般满足结合律,不满足交换律。
3.线性变换的和还是线性变换
性质: 线性空间V上全体线性变换,对于如上定义的加法与数量乘法,也构成数域P上一个线性空间。
在这里插入图片描述
注意:
1.线性变换σ可以当且仅当线性变换σ是一一对应的。(双射)
2.设α1,α2,…αn是线性空间V的一组基,σ为V的线性变换,则σ可逆当且仅当σ(α1),σ(α2),…σ(αn)线性无关。
3.可逆的线性变换把线性无关的向量组变成线性无关的向量组。
在这里插入图片描述

注意: 同一个线性变换的多项式的乘法是可交换的。

线性变换的矩阵

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值