高等代数–线性变换
声明: 本篇文章内容主要对《高等代数》第三版第七章内容的总结,复习
说明:这块的定理看起来是哪个意思,但是证明起来还是比较困难的,只有真的理解它的证明,明白每个定理在这块真正的含义,在整章节这个体系中的作用,才能更好的运用他们。
线性变换的定义
性质: 线性空间V到自身的映射通常称为V的一个变换。
即线性变换保持向量的加法和数量乘法。
3.线性变换把线性相关的向量组变成线性相关的向量组.
4.同构还可以把线性无关的向量组变成线性无关的向量组。
线性变换的运算
注意:
1.有限个线性变换的乘积还是线性变换。
2.线性变换的乘积也是线性变换,
乘积一般满足结合律,不满足交换律。
3.线性变换的和还是线性变换
性质: 线性空间V上全体线性变换,对于如上定义的加法与数量乘法,也构成数域P上一个线性空间。
注意:
1.线性变换σ可以当且仅当线性变换σ是一一对应的。(双射)
2.设α1,α2,…αn是线性空间V的一组基,σ为V的线性变换,则σ可逆当且仅当σ(α1),σ(α2),…σ(αn)线性无关。
3.可逆的线性变换把线性无关的向量组变成线性无关的向量组。
注意: 同一个线性变换的多项式的乘法是可交换的。