高等代数(七)-线性变换01:线性变换的定义

本文介绍了线性变换的定义,包括保持向量加法与数量乘法的性质,并通过多个例子展示了线性变换的应用,如平面旋转、内射影、恒等变换、零变换、数乘变换以及求导和积分。此外,还阐述了线性变换的基本性质,如变换零向量的结果、保持线性组合和线性关系式不变等。
摘要由CSDN通过智能技术生成

§ 1 线性变换的定义
上一章我们看到, 数域 P P P 上任意一个 n n n 维线性空间都与 P n P^{n} Pn 同构,
因之, 有限维线性空间的结构可以认为是完全清楚了.
线性空间是某一类事物从量的方面的一个抽象.我们认识客观事物,
固然要羙清它们单个的和总体的性质,
但是更重要的是研究它们之间的各种各样的联系. 在线性空间中,
事物之间的联系就反映为线性空间的映射. 线性空间 V V V 到自身的映射通常称为
V V V 的一个变换. 这一章中要讨论的线性变换就是最简单的,
同时也可以认为是最基本的一种变换,
正如线性函数是最简单的和最基本的函数一样.线性变换是线性代数的一个主要研究对象.
下面如果不特别声明,所考虑的都是某一固定的数域 P P P 上的线性空间.
定义 1 线性空间 V V V 的一个变换 A \mathcal{A} A 称为线性变换, 如果对于 V V V
中任意的元素 α , β \alpha, \beta α,β和数域 P P P 中任意数 k k k, 都有
A ( α + β ) = A ( α ) + A ( β ) , A ( k α ) = k A ( α ) . \mathscr{A}(\boldsymbol{\alpha}+\boldsymbol{\beta})=\mathscr{A}(\alpha)+\mathscr{A}(\boldsymbol{\beta}), \quad \mathscr{A}(k \boldsymbol{\alpha})=k \mathscr{A}(\alpha) . A(α+β)=A(α)+A(β),A(kα)=kA(α).
以后我们一般用花体拉丁字母 A , B , ⋯ \mathscr{A}, \mathscr{B}, \cdots A,B, 代表 V V V
的变换, A ( α ) \mathscr{A}(\alpha) A(α) A α \mathscr{A} \alpha Aα 代表元素 α \alpha α
在变换 A \mathscr{A} A 下的像.
定义中等式 (1) 所表示的性质, 有时也说成线性变换保持向量的加法与数量乘法.
下面我们来看几个简单的例子,它们表明线性变换这个概念是有丰富的内容的.
例 1 平面上的向量构成实数域上的二维线性空间.
把平面围绕坐标原点按逆时针方向旋转 θ \theta θ 角, 就是一个线性变换,
我们用, g θ \mathscr{g}_{\theta} gθ 表示. 如果平面上一个向量
α \boldsymbol{\alpha} α 在直角坐标系下的坐标是 ( x , y ) (x, y) (x,y), 那么像
S θ ( α ) \mathscr{S}_{\theta}(\boldsymbol{\alpha}) Sθ(α) 的坐标, 即
α \boldsymbol{\alpha} α 旋转 θ \theta θ 角之后的坐标
( x ′ , y ′ ) \left(x^{\prime}, y^{\prime}\right) (x,y) 是按照公式
( x ′ y ′ ) = (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值