Agent-as-a-Judge:AI系统评估新思路

随着近年来多模态和自主型AI系统的迅猛发展,这些系统已经能够从解决小型、孤立的问题跃升至应对复杂、现实世界的挑战。然而,随着这些系统的不断进化,我们的评估方法也必须与时俱进。传统的评估方法(RAG(Retrieval-Augmented Generation)评测:评估LLM中的幻觉现象),如仅关注最终结果或依赖人工评估,已被证明不足以评估自主型系统所体现的逐步、动态过程。正是在这一背景下,Agent-as-a-Judge框架应运而生,它不仅革新了我们对AI的评估方式,还凸显了自主型系统在自我改进方面的日益增长的作用。今天我们一起了解一下Agent-as-a-Judge。

图片

一、当前评估方法的局限性

(一)聚焦最终结果

传统 AI 评估主要关注最终输出,例如评估代码生成系统时,仅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值