随着近年来多模态和自主型AI系统的迅猛发展,这些系统已经能够从解决小型、孤立的问题跃升至应对复杂、现实世界的挑战。然而,随着这些系统的不断进化,我们的评估方法也必须与时俱进。传统的评估方法(RAG(Retrieval-Augmented Generation)评测:评估LLM中的幻觉现象),如仅关注最终结果或依赖人工评估,已被证明不足以评估自主型系统所体现的逐步、动态过程。正是在这一背景下,Agent-as-a-Judge框架应运而生,它不仅革新了我们对AI的评估方式,还凸显了自主型系统在自我改进方面的日益增长的作用。今天我们一起了解一下Agent-as-a-Judge。
一、当前评估方法的局限性
(一)聚焦最终结果
传统 AI 评估主要关注最终输出,例如评估代码生成系统时,仅