RAG与长上下文LLM(Long-Context LLM):一场AI领域的对决

当前AI领域快速发展,各种新概念层出不穷,其中Retrieval-Augmented Generation(简称RAG)和长上下文Large Language Models(LLMs,以下简称长上下文LLM)成为了当下热议的话题。开发者和研究人员在特定AI场景中,往往难以抉择是选择基于检索增强生成的系统架构(RAG(Retrieval Augmented Generation)及衍生框架:CRAG、Self-RAG与HyDe的深入探讨),还是为了节省工作量而直接使用长上下文的大型语言模型(LLM)?今天我们一起来聊一聊这两种技术。

图片

一、RAG:检索增强生成的奥秘

1. RAG的定义与起源

检索增强生成(Retrieval-Augmented Generation,简称RAG)是一种通过引入可信赖的数据源(如经确认的权威来源或组织内部知识库)来增强大型语言模型(LLM)能力的技术。这一术语源自MetaAI(前身为Facebook AI Research)2020年发表的一篇论文《Retrieval Augmented Generation for Knowledge Intensive tasks》(面向知识密集型任务的检索增强生成)。RAG在生成过程中嵌入了一个数据检索步骤,这一步骤服务于多重目的。

2. RAG的运作机制

RAG的核心在于其检索和生成相结合的能力(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值