通过语义压缩文本降低LLM成本

大型语言模型在处理自然语言文本方面表现出色,它们能够处理非结构化数据,并从大量信息中识别出相关内容。然而,这些模型都有一个共同的限制,即上下文窗口大小。上下文窗口是指模型能够同时处理的最大文本量,它限制了模型处理长文本或大量文本数据的能力。对于像Bazaarvoice这样的公司来说,这个限制尤为明显。Bazaarvoice一直在收集用户生成的产品评论,这些评论数量庞大且内容多样。为了提供产品评论摘要功能,Bazaarvoice需要处理数百万甚至数千万条评论,这远远超出了大多数LLM的上下文窗口限制。

一、语义压缩技术的提出

面对上述挑战,Bazaarvoice提出了一种创新的解决方案:语义压缩(知识蒸馏:大模型(LLM)中的模型压缩与知识转移技术)。该技术的核心思想是,许多评论表达了相同或相似的观点,因此可以通过识别并去除重复或相似的文本来减少输入到LLM中的文本量。这样不仅可以避免超出上下文窗口限制,还可以降低LLM的使用成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值