大型语言模型在处理自然语言文本方面表现出色,它们能够处理非结构化数据,并从大量信息中识别出相关内容。然而,这些模型都有一个共同的限制,即上下文窗口大小。上下文窗口是指模型能够同时处理的最大文本量,它限制了模型处理长文本或大量文本数据的能力。对于像Bazaarvoice这样的公司来说,这个限制尤为明显。Bazaarvoice一直在收集用户生成的产品评论,这些评论数量庞大且内容多样。为了提供产品评论摘要功能,Bazaarvoice需要处理数百万甚至数千万条评论,这远远超出了大多数LLM的上下文窗口限制。
一、语义压缩技术的提出
面对上述挑战,Bazaarvoice提出了一种创新的解决方案:语义压缩(知识蒸馏:大模型(LLM)中的模型压缩与知识转移技术)。该技术的核心思想是,许多评论表达了相同或相似的观点,因此可以通过识别并去除重复或相似的文本来减少输入到LLM中的文本量。这样不仅可以避免超出上下文窗口限制,还可以降低LLM的使用成本。