自适应RAG系统(Multi-Agentic RAG:探索智能问答系统的新边界(含代码))是一种能够根据用户查询的具体语境,动态选择检索策略与生成方式的人工智能系统。它结合了先进的自然语言处理技术和信息检索算法,能够在海量数据中快速定位相关信息,并基于这些信息生成准确、连贯的回答。LangGraph、OpenAI和Tavily作为这一过程中的关键工具,分别承担着流程编排、语言生成与信息检索的重任。
一、系统架构与工具介绍
-
LangGraph:LangGraph(探索LangGraph:开启AI Agent构建的新路径)是一个用于编排工具和管理对话逻辑的库。它允许开发者以图形化的方式定义工作流,将不同的功能模块(如检索器、生成器等)连接起来,形成一个高效的信息处理流程。在自适应RAG系统中,LangGraph负责协调各个组件的工作,确保信息能够顺畅地在不同模块间传递。
-
OpenAI:OpenAI(OpenAI’s O3:AI推理模型的新前沿)是自然语言处理领域的领军企业,其提供的GPT系列模型在文本生成方面表现出色。在自适应RAG系统中,OpenAI模型被用作生成器,根据检索到的相关信息生成回答。通过微调OpenAI模型,可以使其更好地适应特定领域或任务的需求,从而提高生成的准确性和连贯性。
-
Tavily:Tavily是一个强大的网络搜索引擎,它能够根据用户查询快速返回相关网页或文档。在自适应RAG系统中,Tavily作为外部信息源,为系