新春佳节,蛇年大吉!愿您在新的一年里,生活如蛇行般灵动自如,事业似蛇舞般活力四射。蛇年,愿您福运缠身,财源广进,家庭和睦,幸福安康!今天给大家推荐一些大模型(LLM)工程师相关的免费学习资料,先收藏起来哦
1. 运行LLM
运行LLM可能由于硬件要求较高而变得困难。根据你的使用场景,你可能希望通过API(如GPT-4)简单地调用模型,或者在本地运行模型(6个最受欢迎的本地运行大模型工具整理)。在任何情况下,额外的提示工程和引导技术都可以改善并约束模型的输出,以适应你的应用程序。
-
LLM API:API是部署LLM的一种便捷方式。这一领域分为私人LLM(如OpenAI、Google、Anthropic、Cohere等)和开源LLM(如OpenRouter、Hugging Face、Together AI等)。
-
开源LLM:Hugging Face Hub是寻找LLM的好地方。你可以直接在Hugging Face Spaces中运行其中一些模型,或者下载并在本地应用中运行,例如通过LM Studio或使用llama.cpp或Ollama通过命令行运行。
-
提示工程:常见的技术包括零样本提示(zero-shot prompting)、少样本提示(few-shot prompting)、思维链(chain of thought)和ReAct。这些技术更适合大型模型,但也可以适应小型模型。
-
结构化输出:许多任务需要结构化的输出,例如严格的模板或JSON格式。像LMQL、Outlines、Guidance等库可以用来引导生成并遵循给定的结构。
推荐:
-
Run an LLM locally with LM Studio by Nisha Arya: Short guide on how to use LM Studio.(https://www.kdnuggets.com/run-an-llm-locally-with-lm-studio)
-
Prompt engineering guide by DAIR.AI: Exhaustive list of prompt techniques with examples(https://www.promptingguide.ai/)
-
Outlines — Quickstart: List of guided generation techniques enabled by Outlines.(https://dottxt-ai.github.io/outlines/latest/quickstart/)
-
LMQL — Overview: Introduction to the LMQL language.(https://lmql.ai/docs/language/overview.html)
2. 构建向量存储
创建向量存储(构建非英文RAG(Retrieval-Augmented Generation)系统时,embedding很重要)是构建检索增强生成(Retrieval-Augmented Generation, RAG)管道的第一步。文档被加载、拆分&#x