大模型(LLM)工程师实战之路(含学习路线图、书籍、课程等免费资料推荐)

新春佳节,蛇年大吉!愿您在新的一年里,生活如蛇行般灵动自如,事业似蛇舞般活力四射。蛇年,愿您福运缠身,财源广进,家庭和睦,幸福安康!今天给大家推荐一些大模型(LLM)工程师相关的免费学习资料,先收藏起来哦

1. 运行LLM

运行LLM可能由于硬件要求较高而变得困难。根据你的使用场景,你可能希望通过API(如GPT-4)简单地调用模型,或者在本地运行模型(6个最受欢迎的本地运行大模型工具整理)。在任何情况下,额外的提示工程和引导技术都可以改善并约束模型的输出,以适应你的应用程序。

  • LLM API:API是部署LLM的一种便捷方式。这一领域分为私人LLM(如OpenAI、Google、Anthropic、Cohere等)和开源LLM(如OpenRouter、Hugging Face、Together AI等)。

  • 开源LLM:Hugging Face Hub是寻找LLM的好地方。你可以直接在Hugging Face Spaces中运行其中一些模型,或者下载并在本地应用中运行,例如通过LM Studio或使用llama.cpp或Ollama通过命令行运行。

  • 提示工程:常见的技术包括零样本提示(zero-shot prompting)、少样本提示(few-shot prompting)、思维链(chain of thought)和ReAct。这些技术更适合大型模型,但也可以适应小型模型。

  • 结构化输出:许多任务需要结构化的输出,例如严格的模板或JSON格式。像LMQL、Outlines、Guidance等库可以用来引导生成并遵循给定的结构。

推荐:

  • Run an LLM locally with LM Studio by Nisha Arya: Short guide on how to use LM Studio.(https://www.kdnuggets.com/run-an-llm-locally-with-lm-studio)

  • Prompt engineering guide by DAIR.AI: Exhaustive list of prompt techniques with examples(https://www.promptingguide.ai/)

  • Outlines — Quickstart: List of guided generation techniques enabled by Outlines.(https://dottxt-ai.github.io/outlines/latest/quickstart/)

  • LMQL — Overview: Introduction to the LMQL language.(https://lmql.ai/docs/language/overview.html)

2. 构建向量存储

创建向量存储(构建非英文RAG(Retrieval-Augmented Generation)系统时,embedding很重要)是构建检索增强生成(Retrieval-Augmented Generation, RAG)管道的第一步。文档被加载、拆分&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值