改进RAG:利用混合搜索与重排序优化检索效果(含代码示例)

RAG 通过结合信息检索和语言生成能力,让模型在生成文本时能够参考相关的外部知识,从而生成更准确、更具针对性的内容。然而,在实际应用中,RAG(企业 RAG 准确性提升全流程指南:从数据提取到精准检索) 面临着诸多挑战,其中准确检索相关信息是关键问题之一。本文将围绕如何通过混合搜索与重排序技术来提升 RAG 的检索效果展开深入探讨。

一、RAG 检索面临的挑战

在 RAG 的实际应用中,检索环节存在诸多难点。其中,精确匹配特定标识符(ID)是一个典型问题。许多应用场景中,数据通常会被赋予唯一的 ID,这些 ID 可能包含数字、字母等复杂组合,长度往往在 10 个字符以上。在检索时,如果仅依靠基于向量的语义搜索,如使用 PGVector 存储嵌入向量进行相似性检索,会出现检索结果不准确的情况。

语义搜索基于向量之间的软相似性来对检索结果进行排序,即通过计算向量之间的相似度(如余弦相似度)来确定文档与查询的相关程度,并返回相似度最高的前 k 个结果。这种方式在处理语义相近的文本时表现出色,但对于精确匹配 ID 这类需要严格一致性的任务却力不从心。例如,当查询 “1234567890XYZ” 时,语义搜索可能会返回包含 “1234567890ABC” 的文本块,因为从语义相似度的角度来看,这两个 ID 具有一定的相似性,而真正匹配的 “1234567890XYZ” 可能由于其他因素(如向量表示的细微差异)被排在较低的位置,甚至被排除在检索结果之外。这一问题严重影响了 RAG 系统在涉及 ID 精确匹配场景下的准确性,如在医疗记录查询(根据患者 ID 检索特定病历)、金融交易信息查询(根据交易 ID 获取交易详情)等领域,错误的检索结果可能导致严重的后果。

二、混合搜索解决方案

为了解决上述问题,混合搜索方法应运而生。这种方法结合了多种搜索技术的优势,以提高检索的准确性和全面性。具体包括以下几个步骤:

(一)基于 PGVector 的语义搜索

PGVector 是一个用于在 PostgreSQL 数据库中存储和查询向量数据的扩展。它允许将文本或其他数据转化为向量形式,并通过向量相似性搜索来查找相关的文档。在混合搜索的第一步,利用 PGVector 进行语义搜索,能够快速找到与查询在语义上相关的文本块。通过预先训练的嵌入函数(如使用 JinaAI 的 “jina-embeddings-v2-base-en” 模型)将文档和查询转化为向量表示,然后在数据库中进行高效的相似性检索。例如,在一个包含大量新闻文章的文档库中,当查询 “科技行业最新动态” 时,PGVector 语义搜索可以迅速返回与科技行业相关的文章片段,这些片段在语义上与查询具有较高的相关性。虽然

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值