探秘 LLM Agents:ReAct 框架藏着哪些惊喜?

LLM Agents 作为一个新兴且极具潜力的领域,正逐渐改变人们与技术交互的方式。本文将深入探讨 LLM Agents,重点聚焦于 ReAct 框架,剖析其原理、优势以及实际应用。

一、AI Agents 的演进

“Agents” 这一概念在人工智能领域并非新生事物。从早期简单的语音激活玩具到如今功能强大的数字助理,AI Agents 经历了漫长的发展历程。

1916 年的 Radio Rex 是最早的例子之一,这是一款语音激活玩具,当你呼唤它的名字时,它会做出反应,尽管功能简单,却开启了机器依照指令行动的先河。1952 年,Bell Labs 推出 Audrey,它能够识别 spoken digits,为语音识别技术奠定了基础。

图片

1960 年代,MIT 的 Joseph Weizenbaum 创造了 ELIZA,它通过简单的模式匹配模拟对话。虽然 ELIZA 的回复并非基于真正的理解,但却引发了人们对机器智能交互的思考,产生了著名的 ELIZA 效应。1970 年代,Carnegie Mellon University 开发的 Harpy,是早期的语音识别系统,它利用语言模型减少错误,能理解大约 1000 个单词 。

到了 1980 年代,IBM 的 Tangora 使用统计方法识别多达 20000 个单词,为现代语音转文本软件奠定了基础。1990 年代,Dragon NaturallySpeaking 成为首批商业语音识别系统之一,能够实时将语音转录为文本,改变了人们与计算机的交互方式。同年,IBM Simon 智能手机结合了基本的语音识别和短信功能,预示着多功能数字助理的到来。

2011 年,Apple 推出 Siri,利用自然语言处理理解用户请求,执行各种任务并进行基本对话。2014 年,Amazon 的 Alexa 问世,迅速融入智能家居生态系统,不仅能回答问题,还能管理家庭设备、下单购物和提供娱乐 。这些系统都可被视为 “Agents”,其中部分借助人工智能的系统,如 Siri 和 Alexa,属于 “AI Agents”。

二、LLM Agents 的崛起

随着 LLM 的发展,LLM Agents 应运而生。LLM Agents 是能够利用 LLM 对问题进行推理、制定解决方案并借助一系列工具、内存和检索执行计划的系统。它主要包含四个关键组件:检索、推理、记忆和工具使用。

检索功能使 Agent 能够获取实时数据,确保信息的准确性。例如,在金融领域,Agent 可以获取最新的市场趋势数据,为投资者提供及时的建议。推理方面,通过先进的提示技术,如思维链,引导 Agent 做出决策。以医疗领域为例,Agent 可以根据患者的症状和医学知识进行推理,提供初步的诊断建议。记忆包括短期记忆(近期对话历史)、长期记忆(结构化信息存储)和特定任务回忆,使 Agent 能够适应不同场景并提供个性化服务。工具使用则让 Agent 能够与外部系统交互,获取数据或执行操作,比如在电商场景中,Agent 可以调用库存系统查看商品是否有货 。

三、ReAct 框架解析

3.1 ReAct 框架概述

ReAct,即 Reasoning and Acting,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值