1.1 总体建设任务
以统一地址库和人、房、企、事件等社会治理数据归集的“智能塔基”建设为牵引,构建市域治理数据中心,实现社会治理数据共建共享,并在社会治理业务系统基础上,构建市级、区(县、市)、乡镇(街道)、村(社区)四级市域社会治理业务应用体系;在城市大脑基础设施和各类智能分析引擎群的支撑下,构建“1+5+1”安全风险防范体系。
1.2 总体设计方案
1.2.1 设计原则
1.2.1.1 科学性
科学性是判断事物是否符合客观事实的标准,富有科学依据。杭州市域治理数字化系统的建设,需要从需求出发,遵循当前国家、省、市各类相关政策文件精神,深入领会社会治理社会化、法治化、智能化、专业化水平的建设目标,结合打造“数字经济第一城”及市委政法委市域治理“六和塔”工作体系的工作要求,确保系统建设的方向性一直保持科学的路径,不断演化。
1.2.1.2 先进性
当前,互联网、云计算、大数据、人工智能、物联网的快速发展,促使社会治理信息化建设从传统走向现代,从机械走向智能,杭州市域治理数字化系统的建设,需要以省市电子政务的总体技术架构为基础,结合本地业务诉求,充分借助前沿技术,提升平台功能、性能等各类指标。
1.2.1.3 可靠性
在整体设计中需确保系统的可靠性。系统集成选择当前成熟、先进、容易管理及使用方便的系统,充分利用内存数据库技术、数据库事务机制、数据交换规范等,减少数据出错和宕机几率,开发的功能和技术路线需经过严密的测试验证,使系统能有很好的可靠性。
1.2.1.4 成熟性
按照工期要求,系统建设需要采用成熟可靠的技术方案,依托现有产品,按照业务功能需求进行逐一比对,确认功能完整性和实用性,从而在工作要求时限内,保质保量的完成项目交付。
1.2.1.5 经济性
项目建设应当充分考虑项目预算的实际金额,从实用角度出来,坚决杜绝华而不实的建设思路,并实现对现有信息化建设成果的充分融合,保护现有投资,在合理的项目经费下,完成平台建设。
1.2.1.6 合理性
在项目需求调研、方案编制、可行性研究、平台开发部署测试上线以及项目运维等过程中,应当充分考虑好各项工作的合理性,通过建立标准化的项目管理规范和流程机制,实现整个项目管理过程的合规,确保各项工作的开展,都遵循合理性的工作要求。
1.2.1.7 扩展性
随着市域治理业务不断发展,计算机应用水平不断提高,信息技术也日新月异,因而系统所选的应用软件、管理软件、软件总体设计方法以及相应的硬件设备应具有良好的兼容性和拓展性,保证今后系统的完善、扩展、升级和提高,其资源可重新得到利用。同时不同的业务系统应具有开放的标准接口,能与其他系统之间建立良好有效的无缝链接,使得系统具有良好的扩展余地。
同时,在基础设施扩容、与其它系统集成方面做到无缝对接和灵活扩展。
1.2.2 总体架构设计
在社会治理业务系统基础上,构建市级、区(县、市)、乡镇(街道)三级市域社会治理业务应用体系;在城市大脑基础设施和各类智能分析引擎群的支撑下,构建“1+5+1”安全风险防范体系。
“1”即一套安全风险防范搜索引擎。依托城市大脑算力和智力支持,构建安全风险防范搜索引擎,实现风险和预警信息的抓取、社会治理态势和领域安全风险分析。
“5” 即五大领域安全风险防范系统。城市大脑在推进交通、城管、警务等行业应用系统建设的同时,统筹推进行业安全风险防范模块建设。通过若干个行业安全风险模块的聚合,进而形成涵盖政治、经济、文化、社会、生态等五大领域的安全风险防范系统。
“1” 即一组考核评价模型。实现对各地各部门安全风险防范系统推进情况、安全风险防范处置落实情况以及社会治理成效进行考核评价。
1.2.3 平台架构设计
参照省政府数字化转型“四横三纵”七大体系建设要求,市域治理数字化系统采用“五横三纵”的总体架构,依托市电子政务云基础设施和城市大脑算力算法资源进行建设。
1.2.4 技术路线
本项目涉及相关技术比较多,主要分为基础平台技术、杭州电子政务云平台技术、数据处理技术、数据分析技术和数据展示技术五类。
1.2.4.1 基础平台技术
1.2.4.1.1 SOA体系架构
面向服务的体系结构(service-oriented architecture,SOA)是一种组件模型,它将应用程序的不同功能组件(服务),通过“服务”之间的良好接口联系起来(也就是“服务”之间的松耦合)。接口是采用中立方式进行定义的,独立于实现“服务”的硬件平台,操作系统和编成语言。这是构建在各种各样系统中的“服务”可以以一种统一和通用方式进行交互。松耦合的好处是保证系统灵活性,另外,还可以保证“服务”的重复利用。Web服务是目前实现SOA最重要的标准。
SOA是在原有组件化和EDI(电子数据交换)的基础上,进一步将可重复利用的软件资源抽象化和标准化,换句话说,就是抽取软件基因,建立互通的管道,达到重复利用和信息流畅的目的,解决业务最头痛的“适应业务变化”和“集成”问题。与过去的组件化模式相比,SOA的新奇之处还在于:它变过去的技术组件为业务组件(又叫服务),强调的是技术无关性,关注的是实现怎样的业务功能——在业务请求与响应之间随时搭建快速通道,同时,变过去的紧耦合为松耦合,既保证系统弹性,又不失系统效率,进而实现重复利用软件资源、快速响应市场需求变化、提高生产力等目标。
过去,应用软件基本上是按照业务流程逐一对应开发的,每一个应用自成体系、自立门户。事实上,任何应用都包含最基本的三个内容:界面、业务逻辑和数据展现,应该可以重复利用。但就因为每个应用自成体系,每开发一个新应用,就需要重开发一遍界面与数据展现,重写一遍业务代码,浪费了大量的时间和人力。
而SOA就是力求改变过去纵向开发应用的模式,将软件按照业务需求,定义成大小合适的“组件”,作为企业共享资源,随时调用。SOA的核心就是找到将软件组织在一起的方法。
SOA带给用户的好处很明显,除了前面提到的可以降低开发成本,提高系统集成度和响应速度等,还能帮助解决因为系统升级带来的烦恼。传统的软件升级对用户就意味着每三年来一次革命,不仅需耗费大量金钱,还会闹得人仰马翻。现有的GRP等政务软件几乎都是铁板一块,当某一点政策变化时,某一点功能需要调整时,必须全部升级,这不但造成升级TCO成本太高,而且牵一发动全身,质量无法保证。而未来SOA构架下的政务软件就像是一个不断进化的生态过程,某些“服务(业务组件)”不断地局部升级,新的“服务”不断地加入,只有这样的系统才能真正做到RTE实时政府,快速适应政务变化,避免重复建设。
1.2.4.1.2 大数据并行计算框架技术
基于ETL数据抽取融合技术和Quartz分布式自动化任务调度框架构建了融合计算平台,提出基于流程的可视化任务定制并行计算框架技术,保证了时空大数据的自动、高效、可持续的汇聚。
融合计算平台,根据不同的行业来源、不同的数据格式,按需定义时空信息集成任务,通过搭载多个计算节点,实现多任务的自动化并行计算,同时定制的任务可统一管理并设置执行周期,通过Quartz框架的任务触发器实现周期性动态执行。
融合计算平台,基于流程化的可视化任务定制要求,实现了数据融合设计工具,按照功能划分成转换流程设计器、作业设计器。转换流程设计器是以图形化的界面为介质,通过设计器提供的图形化设计功能,完成对数据清洗转换策略及数据转换关系等处理过程进行定制,最终形成完整的转换流程模型;作业设计器同样提供了图形化流程定制功能,通过作业设计器,规划作业步骤,定制步骤间的依赖关系,使得整个作业定制过程更简洁、清晰。
数据融合设计工具除了提供上述的界面交互功能外,还提供了包括数据源组件、作业组件及转换组件三个部分的扩展能力。在必要时,可通过二次开发接口定制、注册自定义组件,从而扩展数据融合平台的能力,满足具体的数据融合需求。
同时,融合计算平台的任务调度系统建立在现有的网络结构之上,通过负载分担技术,将外部发送来的任务均匀分配到节点上执行,而接收到请求的节点响应客户的请求。任务调度系统会把建立的任务存放在任务队列中,节点按照节点组属性存放在不同的节点组队列中。负载均衡能够按照节点的配置信息将任务均匀分配给节点队列。
通过计算中心的执行器启动执行任务的节点,每个节点对应着不同的节点组(节点和节点组是多对一的关系)。建立节点时,会配置节点的信息,以此判断节点的状态,根据心跳机制,按照一定的时间间隔将符合要求的节点发送给任务调度系统;任务调度系统接收节点时,如果节点队列中不包含此节点,就将节点放进队列中;反之,则不放。通过模型及对应的参数信息建立的任务,按照定时调度quartz框架,将任务发送到任务队列中。最终,启用线程,根据节点组关系,将任务和节点匹配好从而执行任务。
1.2.4.1.3 数据分析算法
为了有效地对数据进行分析,需要辅助以各种分析算法。通过这些分析算法,可发现数据变化规律和关联关系等,常用的分析算法有分类(Classification)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、复杂数据类型挖掘(Text,Web,图形图像,视频,音频等)等。
(1)分类算法
分类就是学习得到一个目标函数f,把每个属性集x映射到一个预先定义的类标号y。使用分类算法可以对商品或企业进行分类。
(2)预测算法
预测就是基于历史已有数据的发展趋势,通过函数拟合计算出将来时间段的数据值。预测算法可用于海关进出口宏观走势分析、商品价格走向等。
(3)关联规则
关联规则算法就是发现一个事件和其他事件之间依赖或关联的关系。对于本算法,可用于对商品进出口量、价格波动等分析等。
(4)聚类
聚类就是按照事物间的相似性进行区分和分类的过程,在这一过程中没有教师指导,因此是一种无监督的分类。用聚类算法可对价格进行聚类,以发现价格明显偏离的商品,也可对口岸商品进出口量进行聚类,以发现突增或突减商品等等。
(5)复杂数据类型挖掘
复杂数据类型挖掘指对各种非结构化复杂数据概化后进行分析挖掘。可用于对网页数据进行分析。
本项目的数据清洗、大数据挖掘分析、智能分拨等环节均利用了基于机器学习的人工智能技术,利用新兴的技术手段提升了数据治理能力、实现了数据之间快速关联分析、提高了业务处置流程效率。
1.2.4.1.4 工作流引擎技术
工作流引擎技术是当今世界上在IT应用领域属于基础性前沿技术,以工作流引擎技术为核心的工作流管理系统在电子政务中的应用正在成为发展的趋势。该系统以工作流管理系统为基础,以保证系统不会因为流程的变化而瘫痪,将应用逻辑或流程逻辑相分离,使得流程可以互相连接、交叉或循环进行,也可以打破部门界限而发生于各相关部门之间。传统的信息系统是基于任务的,活动之间的联系不能自动进行,而工作流系统是针对过程的,它可以让多个流程依照规定的规则自动“流动”,而变更流程设置相对容易。通过工作流管理系统所提供的流程定制工具,便可以迅速的搭建起面向具体业务的办公环境,以及方便的增减和修改已定的业务内容和业务流程,并且能够实现多项业务、多个部门的联合办公,特别是在传统业务模式中难以实现的串联和并联审批的业务也可以方便的在网上得以实现。同时工作流管理系统还提供系统日志,有利于事后分析和流程优化。
1.2.4.1.5 地理空间信息共享平台
地理空间信息发布共享平台建设基于SOA思想设计,坚持数据、管理、服务、应用相分离的架构原则,在保持继承性、灵活性和扩展性的前提下,创新大数据技术应用,实现时空地理信息数据的管理、共享、融合和数据交换、知识引擎需求、智能装配。
文件下载地址:https://download.csdn.net/download/llooyyuu/87775279