- 博客(335)
- 收藏
- 关注
原创 ROS-IMU 惯性测量单元消息包-获取IMU设备数据-IMU航向锁定-标准消息包和常用消息包-自定义消息包-栅栏地图格式-发布地图
消息包也是一个软件包消息定义文件文件位置:msg文件通常存放在ROS包的msg目录下。文件格式:msg文件是纯文本文件,每行定义一个字段,字段由类型和名称组成。消息内容语法格式字段定义:每行定义一个字段,格式为类型 名称。支持的类型:基本类型:int8, int16, int32, int64(以及对应的无符号类型uint8, uint16, uint32, uint64)string其他消息类型:可以引用其他已定义的消息类型。
2025-02-10 20:29:16
660
原创 具身智能-强化学习-强化学习基础-马尔可夫
基于价值迭代的方法只能应用在不连续的、离散的环境下(如围棋或某些游戏领域),对于动作集合规模庞大、动作连续的场景(如机器人控制领域),其很难学习到较好的结果(此时基于策略迭代的方法能够根据设定的策略来选择连续的动作)。策略是其从学到的价值函数里面推算出来的。之前说过Q 函数(Q-Function)表示在状态 s 下采取动作 a 后所能获得的期望累积奖励,也可以理解为当前即使奖励+下一个状态的价值函数(即累积期望),当然这里的下一个状态价值函数又可以拆解为各个状态动作价值函数和每个动作的概率加权和。
2025-02-04 21:39:00
719
1
原创 ROS-激光雷达-消息包格式-获取激光雷达数据-激光雷达避障
它通过发射激光束并接收反射光来测量物体的距离,生成点云数据,用于构建环境的三维模型。是一个 ROS(Robot Operating System)命令,用于订阅并显示 /scan 话题上的消息内容。–noarr 参数用于简化输出,不显示数组的完整内容,而是显示数组的类型和长度。RViz 是 ROS(Robot Operating System)中的一个可视化工具,用于显示和调试机器人数据。它支持多种数据类型,包括机器人模型、传感器数据、点云、图像等。它支持多种机器人模型和传感器,并提供物理仿真功能。
2025-02-04 21:00:26
905
原创 ROS-安装ros1/ros2-ROS软件包下载-Gazebo软件包源码编译下载-终端配置-节点+包-话题+消息+发布者-订阅者-各自缓存队列+整体流程-机器人运动控制
在ROS(机器人操作系统)中,节点(Node)之间通过 话题(Topic) 进行通信。发布者(Publisher)负责向某个话题发送消息,而订阅者(Subscriber)则负责从该话题接收消息。10 是队列大小(Queue Size),用于控制消息在发布者和订阅者之间的缓存行为。rosdep 是 ROS(机器人操作系统)中的一个工具,用于安装系统依赖项。初始化终端,不然环境出大问题,直接使用原生环境就行,如果已经配置了,那么。Alt+Shift+D时,将自动分割窗格,并在新窗格中复制当前会话。
2025-02-03 18:56:52
506
原创 强化学习-Deep Q Network
因为格子游戏中的每一个格子就是一个状态,这是离散的,但在现实生活中,很多状态并不是离散而是连续的。所以我们可以通过神经网络来完成离散状态的任务,初始输入是状态,输出的各个行为对应的Q值(也可以理解为概率),这样初始输入就可以是连续的即状态可以是连续的。Q learning和DQN并没有根本的区别。会返回一个迭代器,生成的是一个包含四个元组的列表(假设。是一个包含多个经验的列表,其中每个经验是一个四元组(中的每个四元组解包成四个不同的列表或元组,分别对应。这里的Q值就是神经网络最后输出的不同行为的概率。
2025-01-24 22:37:21
402
原创 强化学习-Q学习-Q表-Bellman方程式
在每次互动后,你会更新之前状态下所选择了的行动的Q值,使用一个称为贝尔曼方程的公式。这个公式会考虑之前选择了的行动后的奖励和当前状态的Q值和之前状态的Q值,以更新当前状态下的Q值。这个公式可以简单解释为:当前状态下选择某个行动的Q值等于当前即时奖励加上折扣后的下一状态的最优行动的Q值。在Q学习中,你会记录每个房间的状态、每个行动的奖励以及你对每个行动的期望价值,这个期望价值被称为Q值。当你在迷宫中要选择一个行动时,你可以查找当前状态对应的行,然后选择具有最高Q值的列对应的行动作为你的决策。
2025-01-22 22:13:45
620
原创 自然语言处理-语言模型-统计语言模型-神经网络语言模型-词向量技术-词向量如何计算-循环神经网络-长短时记忆单元-Seq2Seq网络模型-Attention注意力机制
最大熵模型会通过最大化熵来选择一个概率分布,使得在已知数据约束的情况下,模型不会对任何一个标签(动词或名词)做过强的假设,而是选择一个最“中立”的分布,直到数据给出更多信息来确定正确的标签。当你用最大熵模型来训练时,模型的目标就是学习如何根据这些已知的训练数据,最大化熵,也就是让每个词的标签(动词或名词)尽量不确定,直到数据提供了足够的信息来确定正确的标签。模型参数的确定:最大熵模型的“参数”指的是模型中需要学习的东西,通常是概率分布中的一些权重或系数。所以在递归神经网络中,获得小梯度更新的层停止学习。
2025-01-17 15:53:00
863
原创 graphrag学习
为每个社区生成报告,每个社区报告都会通过 LLM 进行总结,以供速记使用。最后生成社区的向量表示用户查询 (User Query)用户输入查询。实体提取 (Extracted Entities)通过描述嵌入 (Description Embedding) 技术从用户查询中提取实体。对话历史 (Conversation History)记录和使用对话历史信息。这个流程通过多个映射和优先级排序步骤,从用户查询中提取实体,并基于这些实体生成候选的文本单元、社区报告、实体、关系和协变量。
2025-01-15 17:28:36
601
原创 图像识别-目标检测-R-CNN-Fast R-CNN-Faster R-CNN-YOLO(You Only Look Once)-YOLO的unified model
这种方法的核心是。
2025-01-13 11:04:42
920
1
原创 图像识别-VGG-16-连续使用小的卷积核-VGG16源码
-> None:features: 卷积特征提取部分的网络结构(通常通过函数生成)。: 分类任务的类别数量,默认为 1000(如 ImageNet 数据集的分类任务)。: 是否初始化权重,默认为True。dropout: Dropout 的概率,默认为 0.5。
2025-01-11 13:58:23
782
原创 图像识别-迁移学习-AlexNet-AlexNet源码
数据增广:就是数据增强,因为增加了一些改变到训练样本,使得模型能够适应有改变的图片,增强泛化能力。并且使得模型不仅仅只能识别原来的图片,还能识别一些有改变的图片(防止过拟合)IMAGENET1K_V1是个Weights对象,对象属性里有url代表下载模型参数的url,pth代表是pytorch的模型文件。指定了使用这些权重时需要的输入预处理方法,比如裁剪大小为 224。是一个字典,用于存储与权重相关的各种信息,例如模型的参数数量、精度、文件大小等。对两部分得到的卷积结果进行池化,得到各个结果的池化结果。
2025-01-10 21:35:32
787
原创 密码学原理技术-第十四章-Key Management
如果攻击者设法获得 KEK,就能解密之前使用该 KEK 加密的所有会话密钥。因此,攻击者只需保存过去的加密通信数据,一旦获得 KEK,就能解密所有这些过去的通信。在理想的密钥协商(或者说密钥交换)协议中,没有任何单独的一方能够完全控制密钥的值:双方共同生成。用户有公钥权威地方的公钥,用来解密 公钥权威用自己私钥加密的内容。下面的Int(1)是用作填充用的,更全面的说应该是多个0||1。非对称密钥建立协议生成的密钥很大,不适合做对称密钥。没有完整性的对公钥的保护,存在替换并且来源正确。na和nb都是随机数。
2025-01-05 12:03:26
915
1
原创 密码学原理技术-第十三章-Message Authentication Codes (MACs)
理解为对称式的数字签名,但和数字签名还是有很多不一样的。
2025-01-04 22:03:58
414
原创 图像识别-全连接层-卷积层-卷积层的计算-多输入通道场景-多输出通道场景-感受野-填充-VALID 与 SAME-stride-池化-CNN架构
卷积神经网络(Convolutional Neural Network),多用于图像识别,但不仅仅用于图像识别。不过我们在学习卷积神经网络的过程中,可以把图像识别当成假想任务,理解起来会更直观一些。为什么图像数据从多维(图像的原始格式)转化为一维向量(供全连接神经网络处理)时,为何会丢失空间和通道的相关信息,以及可能隐藏的模式信息。想象我们正在处理一张包含蓝天和绿色草地的照片,天空和草地之间有一个清晰的分界线。多维数据(图像格式):转换为一维向量:丢失的空间相关性:忽略的形状信息和模式:为了解决上述问题
2025-01-02 19:15:39
1047
原创 密码学原理技术-第六章-introduction to pulibc-key cryptography
使用 AES 作为对称加密的混合加密协议。
2024-12-30 22:22:57
1101
1
原创 机器学习-感知机-神经网络-激活函数-正反向传播-梯度消失-dropout
虽然两者都是非线性的,但 Tanh 函数在输入接近零时提供了更强烈的非线性映射,这是因为其曲线在这个区域内更为陡峭。无需自己选择特征,传统感知机人工手动提取选择特征,深度学习特征提取的过程是自动完成的。Sigmoid函数导函数区间在0到0.25之间,Tanh函数导函数区间在0到1之间,它们输出的数值一直很小。激活函数是一种非线性函数,它可以把输入的数据映射到一个新的输出值,这个输出值可以在下一层被用作输入。提取特征可以通过最后输出层的前一层隐藏层的输出特征可以看出来,与一开始的输入层的特征不一样。
2024-12-30 18:26:05
647
原创 密码学原理技术-第五章-More About Block Ciphers
在 XTS-AES 模式下:每个块的大小固定(如 128 位),XTS支持“密文窃取”(ciphertext stealing),用于加密长度不为块大小整数倍的明文数据。如果每次转账使用相同的IV,攻击者能够识别这个转账行为发送了很多次,如果是自己转账的,那么将知道这个密文对应就是转账明文加密过后的。平均每种映射有2的16次方个密钥满足,共2的64次方个映射,所以总共2的80次方个密钥。可以尝试修改一定明文从而知道其对应的密文块位置,进而替换为已知的密文块。
2024-12-30 00:46:07
944
原创 密码学原理技术-第四章-The Advanced Encryption Standard (AES)
暴力破解指的是尝试所有可能的密钥组合,直到找到正确密钥。对于 AES,加密的安全性取决于密钥长度。
2024-12-28 21:25:42
1044
原创 机器学习-高斯混合模型
文章目录高斯混合模型对无标签的数据集:使用高斯混合模型进行聚类对有标签的数据集:使用高斯混合模型进行分类总结高斯混合模型对无标签的数据集:使用高斯混合模型进行聚类对有标签的数据集:使用高斯混合模型进行分类总结
2024-12-28 00:11:22
363
原创 密码学原理技术-第三章-The Data Encryption Standard (DES)
从 1970 年代中期到 1990 年代中期,DES 一直是主流的对称加密算法。由于 DES 使用的 56 位密钥已经不再安全,因此后来开发了 高级加密标准 (AES) 来取代它。AES 的密钥长度更长(128、192、256 位),安全性更高。使用 56 位密钥的标准 DES,现在已经可以通过“穷举密钥搜索”方式被轻松破解。
2024-12-27 23:51:39
937
原创 密码学原理技术-第二章-Stream Ciphers
计算上安全:一个密码系统是计算上安全的,如果破解它的已知最佳算法至少需要 t 次运算。这意味着对于今天的计算机来说,执行 t 次运算是计算上不可行的。或者说计算上安全:密码系统的安全性基于当前技术无法在合理时间内完成所需的大量运算。
2024-12-25 13:25:17
1045
原创 机器学习-KMeans聚类
最终聚类完后可以判断新的数据是属于哪个组的,只需要通过判断其距离哪个聚类中心最近即可。讲数据点分成K个不同的组,如果不知道K值,可以一个个尝试,效果最好的就是可以的K值。像素点分为不同的聚类(特征值相似度高的就是一堆聚类)依然是根据特征,不同对象不同的表达特征形式也不一样。
2024-12-24 21:20:33
558
原创 graphRAG+llama3.2的MOOC课程资源问答系统
GraphRAG 是一种结构化的、分层的检索增强生成(RAG)方法,而不是使用纯文本片段的语义搜索方法。GraphRAG 过程包括从原始文本中提取出知识图谱,构建社区层级(这种结构通常用来描述个体、群体及它们之间的关系,帮助理解信息如何在社区内部传播、知识如何共享以及权力和影响力如何分布),为这些社区层级生成摘要,然后在执行基于 RAG 的任务时利用这些结构。让我们修改社区导入的语句,确保所有值都是有效的。实体可以是人名、地名、组织名等,关系可以是实体之间的关联,声明可以是关于实体的具体信息。
2024-12-24 14:49:50
953
1
原创 机器学习-梯度下降+小批量梯度下降+数据归一化
当前参数-损失函数关于参数的导数=新参数,新参数会往损失函数减少的方向变化。小批量梯度下降:每次选择部分数据计算损失率进行梯度下降。每轮分别使用各个批次的数据进行梯度下降,然后反复多轮。随机梯度下降:随机选择数据计算损失率进行梯度下降。
2024-12-22 15:51:17
340
原创 GhostRace: Exploiting and Mitigating Speculative Race Conditions-记录
首先通过设置定时器引起中断,在kfree时引起中断,但由于上锁,所以会等到已解锁就进入定时器的中断处理函数中,可以增加中断处理函数延长时间,这段时间通过其他核心发动系统调用使得向受害者核心发送中断,然后它陷入无限中断。第四行分支最终检查lock cmpxchgq指令的结果,该指令自动比较互斥锁ptr的当前值和旧值old,如果相同,则意味着互斥锁可以被锁定——将互斥锁设置为新值new,并授予对受保护临界区域的访问权,否则不行。实验得到不同架构不同核心和线程安排的瞬态执行时可以执行的指令数量。
2024-12-18 20:39:33
1262
原创 密码学原理技术-第九章-椭圆曲线加密算法
非对称加密方案如RSA和ElGamal需要在整数环和域中进行指数运算,参数通常超过1000比特。这导致以下问题:希望找到能够提供同等安全性的更小字段大小,以减少计算和存储需求。椭圆曲线密码学(ECC)使用一组点(而不是整数)来进行加密操作,系数大小为160-256比特,显著减少了计算开销。
2024-12-18 18:36:05
544
原创 密码学原理技术-第八章-基于离散对数问题的公钥密码体制
文章目录DH密钥交换离散对数问题(Discrete Logarithm Problem, DLP)离散对数问题的攻击(Discrete Logarithm Problem, DLP)Elgamal 公钥加密方案Elgamal 公钥加密方案的攻击不同加密算法对应的安全级别所需密钥长度DHKE (Diffie-Hellman Key Exchange)是一种密钥交换协议,不用于加密(对于基于DHKE的加密,可以使用ElGamal)广泛应用于SSH (Secure Shell)、TLS (Transport
2024-12-18 09:24:18
283
原创 水文知识图谱构建-学习+代码
LLM通过提示词来提取出与防汛抢险相关的术语+聚类算法抽取术语主题重组优化。亮点:三元组+《水利水电工程设计术语标准》SL26-2012—>五元组。数据处理:防汛抢险知识来自多源异构知识载体,半结构化和非结构化。概括:多源文本->LLM+卷积模块+语义关联层面提升。作者:周逸凡 段浩 赵红莉 赵慧子 李豪 韩昆。实体数据增强扩充数据,引入CNN改进提取模型。题目:水文模型知识图谱构建与应用。期刊:《水利学报》2024年1期。知识融合加工,再存到图数据库。
2024-12-17 22:17:54
429
原创 机器学习-正则化技术
这意味着它会惩罚较大的权重值,并且对于较小的权重值也会产生显著的影响。简而言之,L1 正则化通过绝对值惩罚鼓励稀疏解(即许多权重为0),而L2 正则化通过平方惩罚鼓励所有权重的小值分布,而不是让它们变为零。L1 和 L2 正则化之所以会导致不同的权重效果,主要是由于它们对权重施加的惩罚方式不同(就是让权重变化的方式)正则化的方法通常是在损失函数中添加一个正则化项,这个正则化项会根据模型参数的大小来惩罚模型的复杂度。欠拟合:参数太少,太不专注于原来的训练数据,导致模型过于简单。
2024-12-17 22:13:14
1021
原创 基于多距离融合的场次降雨时空相似性比较-阅读+代码
随后提取降雨量、 降雨历时、 降雨强度、降雨中心范围等特征要素, 并计算 3 个方面的降雨特征距离: 降雨要素距离、 降雨中心距离、 降雨总量距离。随着类别的增加, 样本相似度呈现整体减小的趋势, 雨量较小的类别相似度集中分布在较高的范围, 而雨量较大的类别相似度分布范围较广, 平均值较低, 相似度评估效果不理想。两场雨的降雨要素距离=两场雨的分别6个降雨要素的差的平方的和的开根。两场降雨总量距离=两场的每个元素的降雨量的差的平方的和。两场雨的降雨中心距离=1-两场雨的降雨中心相似性。
2024-12-17 15:05:37
798
原创 机器学习-逻辑回归和softmax回归
假设你是一名动物园管理员,你想识别你们园区的动物。你拍了一些照片,其中包含狗、猫和鸟三种不同的动物。你需要一个算法来识别每张照片中的动物是哪一种。一个 型曲线(Sigmoid函数),将线性回归的值压缩到了0到1之间,这样就具备了概率含义;大于0.5为正例,反之是负例。logistic regression 并不是回归任务的算法,而是属于分类任务算法。多分类问题的机器学习算法。多标签和多分类的区别。
2024-12-17 12:46:01
596
原创 自然语言处理NLP——基于电影知识图谱和大型语言模型(LLM)的KBQA问答机器人(增加自然语言提取实体及可视化)
数据库:Mysql(保存聊天和用户和帖子信息) neo4j(保存图谱信息)后端:flask blueprint。
2024-12-16 11:44:55
623
原创 机器学习-多元线性回归
根据历史数据训练模型,未来预测具体数值的任务就是回归任务多元线性回归是众多回归算法中最基础的一个多元:多个维度 影响预测目标的多个因素 房屋的售价取决多个因素三维平面的线性:就是一个平面更高维度的线性:统称为超平面回归:就是拟合数据点拟合可以是线性也可以是非线性三维的线性回归:用平面去拟合数据点三维的非线性回归:曲面拟合数据点多元线性回归:多元空间使用线形体(直线 平面 超平面)去拟合数据点。
2024-12-16 00:15:55
420
原创 CTF-PWN-堆(基本手法总结以及poc)
文章目录参考前置unlinkpocFastbin AttackFastbin Double FreepocAlloc to Stack & Arbitrary AllocpocUnsorted Bin AttackUnsorted Bin LeakpocUnsorted Bin AttackpocLarge Bin AttackpocTcache attackbypass tcache to binpoctcache poisoningpoctcache duppoctcache perthread
2024-12-13 13:31:01
964
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人