dogs vs cats 二分类问题vgg16迁移学习

本文介绍了使用VGG16模型进行猫狗二分类的问题,通过从Kaggle下载的Dogsvs.Cats数据集裁剪小样本进行训练。作者展示了如何预处理数据、构建数据加载器、调整预训练模型以适应新的类别,并在CPU上进行训练。经过200张图片的训练,模型在测试集上达到了92.75%的准确率。

在学习猫狗二分类问题时,我主要参考的是这篇博客:http://t.csdn.cn/J7L0n

然后数据集下载的是:Dogs vs. Cats | Kaggle

下载的数据集一共有25000张,这里采用CPU训练速度非常慢,25000张图片训练一次要4h,所以我们仅选取了200张dog,200张cat用来train,200张dog,200张cat作为test。(从原数据集的train中复制出自己的训练集)。

数据集结构如下:

  • data1
    • train
      • cat(200)
      • dog(200)
    • test
      • cat(200)
      • dog(200)

需要注意的是在以下代码中,train和test下必须要分类!

文件:data1

文件:dogs-vs-cats-迁移学习vgg16-train-small

import torch
import torchvision
from torchvision import datasets,transforms,models
import os
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
import time

path='data1'

transform=transforms.Compose([
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
])

data_image={
    x:datasets.ImageFolder(root=os.path.join(path,x),
                         transform=transform)
    for x in ["train","test"]
}

data_loader_image={
    x:torch.utils.data.DataLoader(dataset=data_image[x],
                                  batch_size=4,
                                  shuffle=True)
    for x in ["train","test"]
}

use_gpu=torch.cuda.is_available()
print(use_gpu)

classes=data_image["train"].classes #按文件夹名字分类
classes_index=data_image["train"].class_to_idx #文件夹类名所对应的链值
print(classes)
print(classes_index)

print("train data set:",len(data_image["train"]))
print("test data set:",len(data_image["test"]))

x_train,y_train=next(iter(data_loader_image["train"]))
mean=[0.5, 0.5, 0.5]
std=[0.5, 0.5, 0.5]
img=torchvision.utils.make_grid(x_train)
img=img.numpy().transpose((1,2,0))
img=img*std+mean

print([classes[i] for i in y_train])
plt.imshow(img)
plt.show()

#选择预训练好的模型vgg16
model=models.vgg16(pretrained=True)
print(model)

for parma in model.parameters():
    parma.requires_grad=False   #预训练的网络不进行梯度更新
    
#改变模型的全连接层,从原模型的1000个类到本项目的2个类
model.classifier=torch.nn.Sequ
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值