梯度下降(BGD)、随机梯度下降(SGD)、Mini-batch Gradient Descent、带Mini-batch的SGD

一、回归函数及目标函数

以均方误差作为目标函数(损失函数),目的是使其值最小化,用于优化上式。

二、优化方式(Gradient Descent)

1、最速梯度下降法

也叫批量梯度下降法Batch Gradient Descent,BSD

a、对目标函数求导

b、沿导数相反方向移动theta

原因:

(1)对于目标函数,theta的移动量应当如下,其中a为步长,p为方向向量。


(2)对J(theta)做一阶泰勒级数展开:

(3)上式中,ak是步长,为正数,可知要使得目标函数变小,则应当<0,并且其绝对值应当越大越好,这样下降的速度更快。在泰勒级数中,g代表J(theta k)的梯度,所以为了使得为负并且绝对值最大,应当使theta的移动方向与梯度g相反。


2、随机梯度下降法(stochastic gradient descent,SGD)

SGD是最速梯度下降法的变种。

使用最速梯度下降法,将进行N次迭代,直到目标函数收敛,或者到达某个既定的收敛界限。每次迭代都将对m个样本进行计算,计算量大。

为了简便计算,SGD每次迭代仅对一个样本计算梯度,直到收敛。伪代码如下(以下仅为一个loop,实际上可以有多个这样的loop,直到收敛):


(1)由于SGD每次迭代只使用一个训练样本,因此这种方法也可用作online learning。

(2)每次只使用一个样本迭代,若遇上噪声则容易陷入局部最优解。

3、Mini-batch Gradient Descent

(1)这是介于BSD和SGD之间的一种优化算法。每次选取一定量的训练样本进行迭代。

(2)从公式上似乎可以得出以下分析:速度比BSD快,比SGD慢;精度比BSD低,比SGD高。

4、带Mini-batch的SGD

(1)选择n个训练样本(n<m,m为总训练集样本数)

(2)在这n个样本中进行n次迭代,每次使用1个样本

(3)对n次迭代得出的n个gradient进行加权平均再并求和,作为这一次mini-batch下降梯度

(4)不断在训练集中重复以上步骤,直到收敛。


©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值