Python 基于透明元素裁切图片(类似Photoshop)





本文测试图像及其代码下载



问题描述

实现类似Photoshop的基于透明元素裁切图片

在这里插入图片描述
1.png
在这里插入图片描述
2.jpg
在这里插入图片描述
3.png
在这里插入图片描述
4.png
在这里插入图片描述
5.png
在这里插入图片描述
6.png
在这里插入图片描述




解决方案

遍历图像数组找出裁切图片的左上角、右下角坐标

import cv2
from PIL import Image


def cv2_crop(im, box):
    '''cv2实现类似PIL的裁剪

    :param im: cv2加载好的图像
    :param box: 裁剪的矩形,(left, upper, right, lower)元组
    '''
    return im.copy()[box[1]:box[3], box[0]:box[2], :]


def get_transparency_location(image):
    '''获取基于透明元素裁切图片的左上角、右下角坐标

    :param image: cv2加载好的图像
    :return: (left, upper, right, lower)元组
    '''
    # 1. 扫描获得最左边透明点和最右边透明点坐标
    height, width, channel = image.shape  # 高、宽、通道数
    assert channel == 4  # 无透明通道报错
    first_location = None  # 最先遇到的透明点
    last_location = None  # 最后遇到的透明点
    first_transparency = []  # 从左往右最先遇到的透明点,元素个数小于等于图像高度
    last_transparency = []  # 从左往右最后遇到的透明点,元素个数小于等于图像高度
    for y, rows in enumerate(image):
        for x, BGRA in enumerate(rows):
            alpha = BGRA[3]
            if alpha != 0:
                if not first_location or first_location[1] != y:  # 透明点未赋值或为同一列
                    first_location = (x, y)  # 更新最先遇到的透明点
                    first_transparency.append(first_location)
                last_location = (x, y)  # 更新最后遇到的透明点
        if last_location:
            last_transparency.append(last_location)

    # 2. 矩形四个边的中点
    top = first_transparency[0]
    bottom = first_transparency[-1]
    left = None
    right = None
    for first, last in zip(first_transparency, last_transparency):
        if not left:
            left = first
        if not right:
            right = last
        if first[0] < left[0]:
            left = first
        if last[0] > right[0]:
            right = last

    # 3. 左上角、右下角
    upper_left = (left[0], top[1])  # 左上角
    bottom_right = (right[0], bottom[1])  # 右下角

    return upper_left[0], upper_left[1], bottom_right[0], bottom_right[1]


if __name__ == '__main__':
    image = cv2.imread('1.png', cv2.IMREAD_UNCHANGED)  # 读取图片
    # image = cv2.imread('2.jpg')
    # image = cv2.imread('3.png', cv2.IMREAD_UNCHANGED)
    # image = cv2.imread('4.png', cv2.IMREAD_UNCHANGED)
    # image = cv2.imread('5.png', cv2.IMREAD_UNCHANGED)
    # image = cv2.imread('6.png', cv2.IMREAD_UNCHANGED)
    cv2.imshow('1', image)

    # 保存裁剪后图片
    box = get_transparency_location(image)
    result = cv2_crop(image, box)
    cv2.imshow('result', result)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    cv2.imwrite('result.png', image)

效果
在这里插入图片描述




参考文献

  1. Pillow (PIL) 文档
智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XerCis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值