蓝桥杯 历届试题 买不到的数目 DP(SDNU 1420.买不到的数目)

买不到的数目
问题描述
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入格式
两个正整数,表示每种包装中糖的颗数(都不多于1000)
输出格式
一个正整数,表示最大不能买到的糖数
样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2

7

    突然接到邀请去讲蓝桥,本以为就是简单讲讲怎么做题,结果那边老师要求去讲题,然后给了我几道题让我到时候讲......所以刚只出了一道新生选拔赛的题,只好放下出题去做一下这些蓝桥的题。其实也有好处,之前对DP并不是特别了解,感觉这次做了这些题之后对DP有有了新的了解emmm。

    这道题用数论的方式其实也可以做,在网上搜索的时候搜的一个方法a*b-a-b就可以得到答案,不过老师给我的时候这道题是划在了DP里面,所以我也没在深入研究这种方法(而且网上有些用DP的代码for循环结束条件是a*b我甚至都不知道为什么...)

    题目很容易理解,就是给出两个数,然后问这两个数最大组合不出来的数是多少。

    那么这里我们可以采用DP的方式,因为组合数字是一步一步向后推出来的,所以我们这里找出一个数的状态,后面的数字直接用前面的组合就可以了。这里我们设a[0],a[1]为给出的两个数,dp[i]代表是否可以组合出这个数字,如果为0则无法组合,不为0则代表可以组合。所以这里先初始化dp[a[0]],dp[a[1]]为1,然后可通过公式dp[i]=dp[i]+dp[i-a[j]]来表示加上一个已知数是否可以组合出来(注意这里要求i>a[j],数组中不能出现负数)。

    然后判断哪一个数为最大,我们可以知道如果组合出了连续a[0](假设a[0]<a[1])个数字,那么后面的数字可以直接加a[0]全部得到,所以判断一下我们已经组合出了多少数字,然后和a[0]进行一下比较,就能得出最大的无法组合出的数字。

    下面AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[5];
int dp[1000005];

int main()
{
    int i,j;
    int ans;
    int cou;
    int minn;
    while(scanf("%d%d",&a[0],&a[1])!=EOF)
    {
        cou=0;
        minn=min(a[0],a[1]);
        memset(dp,0,sizeof(dp));
        dp[a[0]]=dp[a[1]]=1;
        for(i=0;;i++)
        {
            for(j=0;j<2;j++)
            {
                if(i>a[j])
                    dp[i]+=dp[i-a[j]];
            }
            if(!dp[i])
            {
                ans=i;
                cou=0;
            }
            else
                cou++;
            if(cou>=minn)
                break;
        }
        cout<<ans<<endl;
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值