问题描述
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入格式
两个正整数,表示每种包装中糖的颗数(都不多于1000)
输出格式
一个正整数,表示最大不能买到的糖数
样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2
7
突然接到邀请去讲蓝桥,本以为就是简单讲讲怎么做题,结果那边老师要求去讲题,然后给了我几道题让我到时候讲......所以刚只出了一道新生选拔赛的题,只好放下出题去做一下这些蓝桥的题。其实也有好处,之前对DP并不是特别了解,感觉这次做了这些题之后对DP有有了新的了解emmm。
这道题用数论的方式其实也可以做,在网上搜索的时候搜的一个方法a*b-a-b就可以得到答案,不过老师给我的时候这道题是划在了DP里面,所以我也没在深入研究这种方法(而且网上有些用DP的代码for循环结束条件是a*b我甚至都不知道为什么...)
题目很容易理解,就是给出两个数,然后问这两个数最大组合不出来的数是多少。
那么这里我们可以采用DP的方式,因为组合数字是一步一步向后推出来的,所以我们这里找出一个数的状态,后面的数字直接用前面的组合就可以了。这里我们设a[0],a[1]为给出的两个数,dp[i]代表是否可以组合出这个数字,如果为0则无法组合,不为0则代表可以组合。所以这里先初始化dp[a[0]],dp[a[1]]为1,然后可通过公式dp[i]=dp[i]+dp[i-a[j]]来表示加上一个已知数是否可以组合出来(注意这里要求i>a[j],数组中不能出现负数)。
然后判断哪一个数为最大,我们可以知道如果组合出了连续a[0](假设a[0]<a[1])个数字,那么后面的数字可以直接加a[0]全部得到,所以判断一下我们已经组合出了多少数字,然后和a[0]进行一下比较,就能得出最大的无法组合出的数字。
下面AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[5];
int dp[1000005];
int main()
{
int i,j;
int ans;
int cou;
int minn;
while(scanf("%d%d",&a[0],&a[1])!=EOF)
{
cou=0;
minn=min(a[0],a[1]);
memset(dp,0,sizeof(dp));
dp[a[0]]=dp[a[1]]=1;
for(i=0;;i++)
{
for(j=0;j<2;j++)
{
if(i>a[j])
dp[i]+=dp[i-a[j]];
}
if(!dp[i])
{
ans=i;
cou=0;
}
else
cou++;
if(cou>=minn)
break;
}
cout<<ans<<endl;
}
return 0;
}