A - Difference Row

Description

You want to arrange n integers a1, a2, ..., an in some order in a row. Let's define the value of an arrangement as the sum of differences between all pairs of adjacent integers.

More formally, let's denote some arrangement as a sequence of integers x1, x2, ..., xn, where sequence x is a permutation of sequence a. The value of such an arrangement is (x1 - x2) + (x2 - x3) + ... + (xn - 1 - xn).

Find the largest possible value of an arrangement. Then, output the lexicographically smallest sequence x that corresponds to an arrangement of the largest possible value.

Input

The first line of the input contains integer n (2 ≤ n ≤ 100). The second line contains n space-separated integers a1a2...an (|ai| ≤ 1000).

Output

Print the required sequence x1, x2, ..., xn. Sequence x should be the lexicographically smallest permutation of a that corresponds to an arrangement of the largest possible value.

Sample Input

Input
5
100 -100 50 0 -50
Output
100 -50 0 50 -100 

Hint

In the sample test case, the value of the output arrangement is (100 - ( - 50)) + (( - 50) - 0) + (0 - 50) + (50 - ( - 100)) = 200. No other arrangement has a larger value, and among all arrangements with the value of 200, the output arrangement is the lexicographically smallest one.

Sequence x1, x2, ... , xp is lexicographically smaller than sequence y1, y2, ... , yp if there exists an integer r(0 ≤ r < p) such that x1 = y1, x2 = y2, ... , xr = yr and xr + 1 < yr + 1.

题意:

就是找出(x1 - x2) + (x2 - x3) + ... + (xn - 1 - xn)的最大值,并输出最小的排序

分析:

去掉()就是第一个减最后一个,所以最大值放在第一个,最小值放在最后,中间从小到大排列

代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n,i,a[200];
    while(cin>>n)
    {
        for(i=0;i<n;i++)
            cin>>a[i];
        sort(a,a+n);
        swap(a[0],a[n-1]);
        for(i=0;i<n-1;i++)
            cout<<a[i]<<" ";
        cout<<a[n-1]<<endl;
    }
}
感受:

sort排序真方便大笑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值