Topic model and Gibbs Sampling

本文详细介绍LDA主题模型的核心概念和技术实现,包括参数估计方法(如最大似然估计、贝叶斯估计)、共轭分布(如Beta-Binomial、Dirichlet-Multinomial)、采样方法(如MCMC、Gibbs采样)等,并探讨了概率图模型的基础知识。此外还介绍了从LSI到LDA的主题模型发展过程及其应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



前段时间给部门做的LDA seminar的PPT:


http://pan.baidu.com/s/1bns6RKj


大致内容提要:
1.parameter estimation approachs
(ML MAP Bayes Estimation)
2.conjugate distribution
(Beta-Binomial conjugate,dirichlet-mulinomial conjugage)
3.sampling method
(basic sampling algorithms, MCMC, Gibbs sampling)
4.basic of probabilistic graphical models
5.topic model
(LSI\LSA model-text pLSA LDA Gibbs-sampling LDA-training-and-inference example-for-image Extensions-to-LDA)
 
以上内容可以参考PRML chapter1 chapter2 chapter8 chapter10 chapter11和LDA相关论文




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值