数模组训练题

https://vjudge.net/contest/334111#overview

题意 : 给定n个点,求两个点间最小距离;n <= 10000;

n ^ 2 是肯定过不了的,考虑分治;

1、将集合一分为二,求左半边最小距离,右半边最小距离,返回两者较小值;

2、以较小值为半径,以中心点为圆心画圆,寻找左右两边在圆内的点,暴力求距离然后更新答案。

很巧妙,很经典;

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN = 10000 + 5;
int n;

struct hh {double x ,y;}a[MAXN];
double calc(hh a,hh b) {return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y,2) ); }
bool cmp(hh a,hh b) {return a.x < b.x;}

double D(int l,int r)
{
	double ans = 2147483647.0;
	int mid = l + r >> 1;
	if(r - l <= 1)
	{
		ans = calc(a[l],a[r]);
		if(l != r) return ans;
		else return 2147483647.0;
	}
	ans = min(D(l , mid),D(mid + 1 , r));
	int l0 = mid - 1, r0 = mid + 1;
	while(a[l0].x - a[mid].x < ans && l0 >= l) l0 --;
	while(a[r0].x - a[mid].x < ans && r0 <= r) r0 ++;
	for(int i = l0 + 1;i <= r0 - 1 ;i ++)
		for(int j = i + 1;j <= r0 - 1;j ++)
			ans = min(ans ,calc(a[i] ,a[j]));
	return ans;
}

void solve()
{
	for(int i = 1;i <= n;i ++) scanf("%lf%lf",&a[i].x,&a[i].y);
	sort(a + 1,a + n + 1,cmp);
	double ans = D(1,n);
	if(ans >= 10000.0) cout << "INFINITY" << endl;
	else printf("%.4lf\n",ans);
	return;
}
int main()
{
	while(cin >> n && n)
	solve();
	return 0;
 } 

 

https://blog.csdn.net/qq_40907279/article/details/78708856这个博客讲的很清晰。

先考虑直线分割,发现f(n) = f(n - 1) + n,再考虑将直线变成折线。

直线变成折线时,如图;

1

f(n) = f(n - 1) + n;

因此 F(n) = f(2 * n)  - 2 * n;

然后化简为 n * n * 2 - (n - 1)

平面分割问题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,T;
int main()
{
	cin >> T;
	while(T --)
	{
		cin >> n;
		cout << n * n * 2 - (n - 1) << "\n";
	}
}

 

错排:n个人写了n封信送给其他人,问有多少种赠送方案(即每个人不能把信给自己)

错排公式为 f(n) = (n - 1)[f(n - 1) + f(n - 2)]

f(1) = 0, f(2) = 1;

第k个人赠送方案为(n - 1)种,假设他给了第m个人;

分两种情况:

1、第m个人把信给了第k个,则此时方案数为f(n - 2);

2、第m个人没有把信给第k个人,则相当于m是k(m不能给k,k不能给k,两者等价),则此时方案数为f(n - 1);

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
long long a[25];
long long T,n,m;
long long c(long long  x,long long y)
{
	if(x == y) return 1;
	if(!y) return 1;
	if(y == 1) return x;
	else return c(x - 1,y - 1) + c(x - 1,y); 
}
void solve()
{
	cin >> T;
	a[1] = 0,a[2] = 1;
	for(long long i = 3;i <= 20 ;i ++) a[i] = (a[i - 1] + a[i - 2]) * (i - 1);
	a[1] = 1;
	while(T --)
	{
		long long n,m;
		cin >> n >> m;
		cout << c(n,n - m) * a[m] << "\n";
	}
}
int main()
{
	solve();
	return 0;
} 

 

汉诺塔

递推公式为 f(n) = 2 ^ n - 1;

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL n,k,T;
int main()
{
	cin >> T;
	while(T --)
	{
		cin >> n >> k;
		cout << ((LL)1 << (n - k))<< endl; 
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值