牛顿法的C语言实现(数值分析经典算法)

本文介绍了牛顿法的算法理论,通过在点xk处展开函数f(x),得到线性方程并求解,给出迭代公式xk+1=xk-f'(xk)/f(xk),用于求解方程f(x)=0的近似根。同时,文章还提供了C语言的代码实现。
摘要由CSDN通过智能技术生成

牛顿法的C语言实现

算法理论

设已知方程 f ( x ) = 0 f(x)=0 f(x)=0有近似根 x k x_k xk,(假定 f ′ ( x k ) ≠ 0 f'(x_k)\ne0 f(xk)̸=0,将函数 f ( x ) f(x) f(x)在点 x k x_k xk展开,有 f ( x ) ≈ f ( x k ) + f ′ ( x k ) ( x − x k ) f(x)\approx f(x_k)+f'(x_k)(x-x_k) f(x)f(xk)+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值