原题链接:点击打开链接
4704 题意:我这理解能力,也是醉了,半天不懂什么意思。
Sk表示将n划分成k个数的方案的数目
思路:隔板定理,将n块木板划分成k份
有n块木板,n-1个空
分成1份:C(n-1,0);
分成2份:C(n-1,1);
分成3份:C(n-1,2);
分成n份:C(n-1,n-1);
C(n-1,0)+C(n-1,1)+C(n-1,2)+......+C(n-1,n-1)=2^(n-1)%mod,
n比较大,可以用费马小定理。
2 ^ (n - 1) % mod = 2 ^ [(n - 1) % (mod - 1)] % mod
(n - 1) % (mod-1) = (n %(mod - 1) - 1 +( mod-1)) %( mod-1);(公式2)
code:
#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
const int mod=1e9+7;
const int maxx=(1e5+10);
typedef long long LL;
char s[maxx];
LL quick_pow(LL n,LL m)
{
LL ans=1;
while(m!=0)
{
if(m%2)
ans=(ans*n)%mod;//快速幂的时候 %mod
m/=2;
n=n*n%mod;
}
return ans%mod;
}
LL change(char s[],int m )
{
LL ans=0;
int len=strlen(s);
for(int i=0;i<len;i++)
ans=(ans*10+(s[i]-'0'))%m;//转化成数字的时候 %(mod-1),即求出 公式2中的 n %(mod - 1) ;
return ans;
}
int main()
{
while(scanf("%s",s)!=EOF)
{
int m=mod-1;
LL n=change(s,m);
printf("%I64d\n",quick_pow(2,(n-1+m)%m));
}
return 0;
}
原题链接: 点击打开链接
4869 题意:给出m张牌,n个操作,每次 将Xi张牌翻转,求最后能达到多少种状态。
转:思路:在n张牌选k张,很容易想到组合数,但是关键是怎么进行组合数计算呢?我们可以发现,在牌数固定的情况下,总共进行了sum次操作的话,其实有很多牌是经过了多次翻转,而每次翻转只有0和1两种状态,那么,奇偶性就出来了,也就是说,无论怎么进行翻牌,最终态无论有几个1,这些1的总数的奇偶性是固定的。
那么我们现在只需要找到最大的1的个数和最小的1的个数,然后再这个区间内进行组合数的求解即可
但是又有一个问题出来了,数据很大,进行除法是一个不明智的选择,但是组合数公式必定有除法
C(n,m) = n!/(m!*(n-m)!)
但是我们知道费马小定理a^(p-1)=1%p
那么a^(p-1)/a = 1/a%p 得到 a^(p-2) = 1/a%p
发现了吧?这样就把一个整数变成了一个分母!
于是便得到sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-2)%mod))%mod
code:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000009
#define LL __int64
#define maxn 100000+5
LL f[maxn];
void set()
{
int i;
f[0] = 1;
for(i = 1; i<maxn; i++)
f[i] = (f[i-1]*i)%mod;
}
LL quickmod(LL a,LL b)
{
LL ans = 1;
while(b)
{
if(b&1)
{
ans = (ans*a)%mod;
b--;
}
b/=2;
a = a*a%mod;
}
return ans;
}
int main()
{
int n,m,i,j,k,l,r,x,ll,rr;
set();
while(~scanf("%d%d",&n,&m))
{
l = r = 0;
for(i = 0; i<n; i++)
{
scanf("%d",&x);
//计算最小的1的个数,尽可能多的让1->0
if(l>=x) ll = l-x;//当最小的1个数大于x,把x个1全部翻转
else if(r>=x) ll = ((l%2)==(x%2))?0:1;//当l<x<=r,由于无论怎么翻,其奇偶性必定相等,所以看l的奇偶性与x是否相同,相同那么知道最小必定变为0,否则变为1
else ll = x-r;//当x>r,那么在把1全部变为0的同时,还有x-r个0变为1
//计算最大的1的个数,尽可能多的让0->1
if(r+x<=m) rr = r+x;//当r+x<=m的情况下,全部变为1
else if(l+x<=m) rr = (((l+x)%2) == (m%2)?m:m-1);//在r+x>m但是l+x<=m的情况下,也是判断奇偶,同态那么必定在中间有一种能全部变为1,否则至少有一张必定为0
else rr = 2*m-(l+x);//在l+x>m的情况下,等于我首先把m个1变为了0,那么我还要翻(l+x-m)张,所以最终得到m-(l+x-m)个1
l = ll,r = rr;
}
LL sum = 0;
for(i = l; i<=r; i+=2)//使用费马小定理和快速幂的方法求和
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-2)%mod))%mod;
printf("%I64d\n",sum%mod);
}
return 0;
}