基本思想
将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
void heapify_D(int tree[], int n, int i)
{//最大值
if (i >= n)
{return;}
//n是节点总数
int lchild = 2 * i + 1;//i是当前节点
int rchild = 2 * i + 2;
//找到一个'三角'中的最大值
int max = i;
if (lchild<n && tree[lchild] > tree[max])
{
max = lchild;
}
if (rchild<n && tree[rchild] > tree[max])
{
max = rchild;
}
if (max != i)
{
swap(tree,max,i);
heapify_D(tree,n,max);//从上往下
}
}
void buildheap_D(int tree[], int n)
{
//构造大顶堆,从最后一个非叶子节点开始
int lastnode = n - 1;
int parent = (lastnode - 1) / 2;
int i;
for (i = parent; i >= 0; i--)
{
heapify_D(tree, n, i);
}
}
void heapsort(int tree[],int n)//排序,n:数量
{
buildheap_D(tree,n);//建立大顶堆,
int i;
for (i = n - 1; i >= 0;i--)
{
swap(tree,i,0); //交换顶点与最后值
heapify_D(tree,i,0);//在从顶点出发,
//满足每个三角的最大值规则
}
}
int main()
{
int tree[] = { 4, 10, 3, 5, 1, 2 };
int n = 6;
heapsort(tree,n);
int i;
for (i = 0; i < n; i++)
{
printf("%d\t",tree[i]);
}
return 0;
}