Distilling Effective Supervsion for Robust Medical Image Segmentation学习笔记

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

提示:这里可以添加本文要记录的大概内容:

论文:Distilling Effective Supervsion for Robust Medical Image Segmentation
论文地址:https://arxiv.org/pdf/2106.11099.pdf


提示:以下是本篇文章正文内容,下面案例可供参考

一、摘要

尽管深度学习方法在医学图像分割任务中取得了成功,但人类水平的性能依赖于具有高质量注释的大量训练数据,这些数据的收集成本高昂且耗时。实际情况是,存在带有标签噪声的低质量标注,导致学习模型性能欠佳。带噪声标签的分割学习的两个主要方向包括像素级噪声鲁棒训练和图像级噪声鲁棒训练。在这项工作中,我们提出了一种新的框架,通过提取有效的监督信息从像素和图像级别来处理带噪声标签的分割。特别地,我们显式地估计每个像素的不确定性作为像素级噪声估计,并通过使用原始标签和伪标签提出像素级鲁棒学习。此外,我们提出了一种图像级鲁棒学习方法,以容纳更多的信息作为像素级学习的补充。我们在模拟和真实的噪声数据集上进行了广泛的实验。The results demonstrate the advantageous performance of our method compared to state-of-the-art baselines for medical image segmentation with noisy labels.

二、正文

1.引言

图像分割在生物医学图像分析中起着重要的作用。随着深度学习的快速发展,许多基于深度神经网络(DNNs)的模型都取得了很好的分割性能[1]。这种方法的成功依赖于大量带有高质量手工注释的训练数据,而这些数据的收集既昂贵又耗时。特别是对于医学图像,注释很大程度上依赖于专业知识。事实上,存在带有标签噪声的低质量标注。许多研究表明,标签噪声可以显著影响学习模型[2]的准确性。在这项工作中,我们解决了以下问题:如何提取更有效的信息在嘈杂标记数据集的医疗细分任务?

  • 本文针对带噪声标签的医学图像分割,提出了一种新的twophase framework PINT(Pixel-wise and Image-level Noise Tolerant learning),该框架从像素级和图像级中提取有效的监督信息。
  • 具体来说,我们首先提出了一种新的像素级噪声估计方法相应的鲁棒学习策略。直觉上,在不同的扰动下,对相同输入的预测会在相对干净的标签上一致。基于一致性最大化原则,我们的方法对噪声像素进行重新标记,并进一步明确估计每个像素的不确定性为像素级噪声估计。在估计的像素级不确定性的指导下,我们通过使用原始像素级标签生成的伪标签,提出了像素级噪声容忍学习(Pixel-wise and Image-level Noise Tolerant learning)。
  • 其次,我们在第二阶段提出图像级容忍噪声学习。对于像素级噪声容忍学习,不确定性高的像素往往是有噪声的。然而,也有一些干净的像素,当它们位于边界时,显示出高度的不确定性。如果只考虑像素级鲁棒学习,网络将不可避免地忽略这些有用的像素。我们将像素级鲁棒学习扩展到图像级鲁棒学习来解决这个问题。基于像素级的不确定性,我们计算图像级的不确定性作为图像级噪声估计。我们根据原始图像级标签和伪标签设计了图像级鲁棒学习策略。我们的图像级方法可以提取出更有效的信息,作为像素级学习的补充。

2.方法论

2.1像素级鲁棒学习

Pixel-wise noise estimation.我们研究带有噪声标签的3D医学图像分割任务。为了满足GPU内存的限制,我们遵循mean-teacher模型[14]的启发。我们用两个深度神经网络制定了提出的PINT方法。主网络用θ参数化,辅助网络用用̃θ参数化,即θ的指数移动平均线(EMA)。在训练步骤t,,̃θ更新为为̃θt = γ̃θt−1 +(1−γ)θt,其中γ为平滑系数。图1显示了像素级噪声容忍学习框架。
在这里插入图片描述
图1所示。提出的像素级噪声容忍学习框架的示例。我们用不同的扰动生成多个小批量的合成输入{ˆX}M M =1
({ˆXm}Mm=1)合成的小批处理图像通过网络̃θ进行预测。我们将平均预测作为伪标签,并选择预测熵作为估计不确定性的度量。采用基于不确定图的因子α引导的Lseg和Lpse计算修正后的总损耗。图像级耐噪声学习具有类似的管道。

对于每一小批训练数据,我们在具有不同扰动的相同图像上生成合成输入{ˆXm}Mm=1。形式上,我们考虑从训练集中抽样的小批量数据(X, Y),其中X = {x1,···,xK}是K个样本,Y = {y1,···,yK}是相应的噪声标签。在我们的研究中,我们选择高斯噪声作为扰动。然后,我们对辅助网络̃θ进行M次随机正向传递,得到输入中每个像素的概率向量集在这里插入图片描述
{pm}Mm=1。这样,我们选择均值预测作为第v个像素的伪标签:在这里插入图片描述
ˆpv = 1/M∑m pvm 其中pvm为第m个辅助网络对第v个像素的概率。受贝叶斯网络[15]中不确定性估计的启发,我们选择熵作为不确定性估计的度量。当一个像素级的标签趋于干净时,它很可能有一个峰值预测概率分布,这意味着一个小的熵和一个小的不确定性。相反,如果一个像素级的标签往往是有噪声的,它很可能有一个平坦的概率分布,这意味着一个大的熵和高的不确定性。因此,我们将每个像素的不确定性作为像素级噪声估计:
在这里插入图片描述
式中,uv为第v个像素的不确定度,ε为期望算子。实验3.2验证了标签噪声与不确定度之间的关系。

Pixel-wise loss.考虑到预测得到的伪标签也包含有噪声的像素,原始标签也有有用的信息,我们利用原始像素级标签和伪像素级标签来训练我们的分割网络。对于第v个像素,损耗公式为:
在这里插入图片描述
其中Lseg v为主网络预测fv与原始噪声标号yv之间的像素级损失;Lseg v采用交叉熵损失,公式为:Lseg v = Lce(fv, yv) = E[−yvlogfv]
Lpse v是预测fv和伪标签ˆyv之间的像素级损失。对于软标签,ˆyv等于ˆpv,对于硬标签,是ˆpv的一个热版本。Lpse v设计为像素级均方误差(MSE),公式为:Lpse v = lse (fv,ˆyv) = E[||fv−ˆyv||2]。
αv是控制Lseg vLpse v重要性的权重因子。我们提供基于像素级不确定度uv的自动因子αv,而不是手动设置固定值。我们引入αv为exp(−uv)。如果不确定性接收到一个大的值,这个像素级标签就容易产生噪声。该因子αv趋于零,导致模型忽略原始标签而关注伪标签。相反,当不确定性值很小时,这种像素级标签很可能是可靠的。αv趋于1,模型将集中在原始标签上。修正后的像素级总损失可写成:

在这里插入图片描述

2.2图像级鲁棒学习

Image-level noise estimation.对于我们的3D体,我们将每个切片级数据视为图像级数据。基于估计的像素不确定度,图像级不确定度可概括为:Ui = 1 Ni∑v uv,
其中Ui为第i张图像(第i片)的不确定度;v表示像素,Ni表示给定图像中的像素个数。在这种情况下,不确定性小的图像往往会提供更多的信息,即使涉及的一些像素有噪声标签。该管道与像素化框架相似,区别在于噪声估计方法和相应的鲁棒总损失结构。
Image-level loss.对于图像级鲁棒学习,我们利用原始图像级标签和伪图像级标签来训练我们的分割网络。对于第i个图像,损失公式为:
在这里插入图片描述
式中Lseg i为预测fi与原始噪声标签yi之间的图像级交叉熵损失;Lpse i是预测fi与伪标签ˆyi之间的图像级MSE损失;图像级伪标签ˆyi由像素级伪标签ˆyv组成。αi是控制Lseg iLpse i重要性的自动权重因子。相似度,我们提供了基于图像级不确定性Ui的自动因子αi为exp(−Ui)。整流图像级总损耗表示为:
在这里插入图片描述
第一阶段,我们应用像素级噪声容忍学习。基于估计的像素不确定性的指导,我们可以过滤不可靠的像素,只保留可靠的像素。通过这种方式,我们提取了有效的学习信息。但是在分割任务中,也存在一些干净的像素,当它们位于边缘区域时,具有很高的不确定性。因此,我们在第二阶段采用图像级耐噪声学习。根据估计的图像级不确定度,我们可以从信息相对较多的图像中学习。也就是说,图像级学习使我们能够基于整个图像来研究容易被忽略的硬像素。图像级鲁棒学习可以看作是像素级鲁棒学习的补充

3.实验

3.1数据集

对于合成噪声标签,我们使用公开可用的左心房(LA)分割数据集。我们建议读者参阅挑战[20]以了解更多细节。LA数据集提供100个3D MR图像扫描和segmentation masks用于训练和测试。我们将100个扫描分为80个用于训练,20个用于测试。我们随机裁剪112×112×80子卷作为输入。所有数据均经过零均值和单位方差强度归一化预处理。
对于真实数据集,我们收集了30例患者的CT扫描(平均72片/例)。该数据集用于勾画宫颈癌放疗的临床靶体积(CTV)。Ground truth被定义为两个放射肿瘤学家通过共识产生的参考分割。嘈杂的标签是由经验较少的操作人员提供的。随机选取20例患者作为训练图像,其余10例患者作为测试图像。我们将输入图像的大小调整为256 × 256 × 64。

3.2实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

  1. 提出新框架PINT,从像素级和图像级中提取有效的监督信息,用于带有噪声标签的医学图像分割。
  2. 具体来说,第一阶段应用像素级噪声容忍学习,过滤不可靠的像素,只保留可靠的像素。但也存在一些干净的像素,当它们位于边缘区域时,具有很高的不确定性。所以在第二阶段采用图像级耐噪声学习,在信息较多的图像中学习,来处理第一阶段的问题。图像级鲁棒学习可以看作是像素级鲁棒学习的补充。
鉴于提供的引用内容,关于损伤区域分割的问题,我可以提供以下回答: 损伤区域分割是指通过计算机视觉技术和深度学习算法,将医学图像中的损伤区域与正常组织进行分离和标记的过程。在这方面,有许多研究论文提出了不同的方法和算法。 其中一篇论文是《Dual-branch residual network for lung nodule segmentation》(CVPR2019),该论文提出了一种基于双分支残差网络的肺结节分割方法。另一篇论文是《Attention Guided Network for Retinal Image Segmentation》(MICCAI 2019),该论文提出了一种基于注意力引导网络的视网膜图像分割方法。还有一篇论文《SOFT LABELING BY DISTILLING ANATOMICAL KNOWLEDGE FOR IMPROVED MS LESION SEGMENTATION》(ISBI 2019),该论文提出了一种基于解剖知识蒸馏的软标签方法,用于改进多发性硬化症损伤分割。此外,《Accurate Weakly Supervised Deep Lesion Segmentation on CT Scans: Self-Paced 3D Mask Generation from RECIST》也是一篇相关论文,该论文提出了一种基于CT扫描的准确弱监督深度损伤分割方法。 此外,还有一篇论文《Efficient Multi-Scale 3D CNN with fully connected CRF for Accurate Brain Lesion Segmentation》,该论文介绍了一种高效的多尺度3D卷积神经网络和全连接CRF算法,用于准确地分割脑部损伤区域。 综上所述,损伤区域分割是通过应用不同的算法和技术,将医学图像中的损伤区域与正常组织进行分离和标记的过程。这些方法包括双分支残差网络、注意力引导网络、软标签方法、弱监督深度损伤分割以及多尺度3D卷积神经网络和全连接CRF算法等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值