具有噪声标签的鲁棒医学图像分割的点类仿射损失校正

Joint Class-Affinity Loss Correction for Robust Medical Image Segmentation with Noisy Labels

摘要

背景
以有限的注释成本收集的噪声标签阻碍了医学图像分割算法学习精确的语义相关性。先前使用噪声标签进行学习的分割技术仅执行逐像素的方式来保持语义,例如逐像素的标签校正,但忽略了逐对的方式。事实上,我们观察到,以成对的方式捕捉像素之间的亲和力关系可以大大降低标签噪声率。
本文方法

  1. 通过结合像素方式和成对方式,提出了一种新的降噪视角,其中监督分别来自噪声类和亲和标签。将逐像素和逐对方式统一起来,我们提出了一个鲁棒的联合类仿射分割(JCAS)框架来解决医学图像分割中的标签噪声问题
  2. 考虑到以成对方式结合上下文相关性的亲和性,设计了一个差分亲和性推理(DAR)模块,通过对类内和类间亲和性关系进行推理来校正像素分割预测。
  3. 为了进一步增强抗噪声性,设计了类亲和性损失校正(CALC)策略,以通过类和亲和性标签中建模的噪声标签分布来校正监督信号
  4. CALC策略通过理论推导的一致性正则化,对像素和成对方式进行交互。在合成和真实世界的噪声标签下进行的大量实验证实了所提出的JCAS框架的有效性,与上限性能的差距最小。
    代码链接
    在这里插入图片描述

本文方法

在这里插入图片描述
F:特征提取
然后将特征图通过两个分支(一个是基于像素的预测,一个是仿射变换)

Differentiated Affinity Reasoning (DAR)

在图像分割任务中,每个图像都配备了一个ground truth图,指示逐像素的语义类标签。逐像素监督信号不能正则化分割网络以对来自孤立像素的上下文相关性进行建模。因此,我们将嵌入到成对亲和映射P中的上下文依赖性结合起来以指导像素分割结果Q的细化。此外,与将上下文信息聚合为混合物并可能引入不期望的上下文聚合的现有亲和度方法不同,我们提出了一个差分亲和推理(DAR)模块来明确区分类内和类间上下文依赖性,并利用差分上下文来校正分割预测。
除了之前计算的成对亲和图P‘表示类内亲和关系,我们推断反向亲和图P‘re=范数(1−P’)。反向亲和图测量两个像素之间的不相似性,并揭示类间的亲和关系。具体来说,类内仿射推理旨在根据类内仿射关系P‘聚合相关信息,类间亲和推理的目的是根据类间亲和关系P’re,可以公式化为:
在这里插入图片描述
利用所提出的DAR模块,增强了正确的预测,并对不正确的分割结果进行了去偏和校正。

Class-Affinity Loss Correction (CALC)

Class-Level Loss Correction

通过噪声转移矩阵(NTM)对噪声类标签中的标签噪声分布进行建模,该矩阵规定了干净标签m转化为噪声标签n的概率。然后,利用建模的噪声标签分布来校正通过从噪声标签导出的监督信号。这种校正后的损失促进了有噪声的转换预测和有噪声的类标签之间的一致性。因此,一旦获得了真实的NTM,就可以通过分割模型P的输出来恢复干净类预测的期望估计。

Affinity-Level Loss Correction

类似于类级别NTM,亲和级别NTM被定义为TA∈[0,1]2×2,对干净亲和标签翻转到有噪声的亲和标签的概率进行建模。利用建模的标签噪声分布NTM来校正监督信号(即LABi),用于亲和关系学习。

Class-Affinity Consistency Regularization

为了统一像素和成对监督,我们在定理1中桥接类级别和亲和级别的NTM
在这里插入图片描述

结果

在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值