初学者冲冲冲
码龄3年
关注
提问 私信
  • 博客:18,044
    18,044
    总访问量
  • 10
    原创
  • 1,314,461
    排名
  • 4
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2021-11-15
博客简介:

m0_64290725的博客

查看详细资料
个人成就
  • 获得13次点赞
  • 内容获得3次评论
  • 获得104次收藏
创作历程
  • 9篇
    2022年
  • 1篇
    2021年
成就勋章
兴趣领域 设置
  • 人工智能
    机器学习神经网络
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

学习总结!!!

Recommendation Unlearning 代码复现
原创
发布博客 2022.10.07 ·
230 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

论文笔记二 Positive, Negative and Neutral: Modeling Implicit Feedback inSession-based News Recommendatio。

论文笔记二 Positive, Negative and Neutral: Modeling Implicit Feedback inSession-based News Recommendatio。
原创
发布博客 2022.07.29 ·
738 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

论文阅读笔记一:SESSION-BASED RECOMMENDATIONS WITHRECURRENT NEURAL NETWORKS

论文阅读笔记一:SESSION-BASED RECOMMENDATIONS WITHRECURRENT NEURAL NETWORKS,基于RNN的会话推荐。
原创
发布博客 2022.07.23 ·
1038 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

U-net网络框架 学习笔记

一 U-net 提出的背景及好处 原论文为:U-Net: Convolutional Networks for Biomedical Image Segmentation1.1提出背景: Unet提出的初衷是为了解决医学图像分割的问题; 一种U型的网络结构来获取上下文的信息和位置信息 为了解决细胞层面的分割的任务1.2在医学领域的优势 :1.医疗影像语义较为简单、结构固定。需要去筛选过滤无用的信息。医疗影像的所有特征都很重要,因此低级特征和高级语义特征都很重要...
原创
发布博客 2022.05.06 ·
3953 阅读 ·
2 点赞 ·
1 评论 ·
48 收藏

图像分割与GAN网络

图像分割与GAN网络
原创
发布博客 2022.04.23 ·
4561 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

基于噪声伪标签和对抗学习的医学图像分割标注高效学习

Annotation-Efficient Learning for Medical ImageSegmentation Based on Noisy Pseudo Labelsand Adversarial Learning 论文学习
原创
发布博客 2022.04.16 ·
4392 阅读 ·
3 点赞 ·
1 评论 ·
34 收藏

一元线性回归实例和梯度下降应用及近期学习知识点总结 一月16日学习笔记

一元线性回归,梯度下降,代码实例,Python
原创
发布博客 2022.01.21 ·
1348 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

1月13号学习笔记 逻辑回归

逻辑回归,最大似然估计,梯度下降
原创
发布博客 2022.01.16 ·
507 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

矩阵分解与梯度下降 1月九日学习笔记

梯度下降与矩阵分解
原创
发布博客 2022.01.10 ·
727 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

梯度下降与一元线性回归

回归分析只涉及到两个变量的,称一元回归分析。一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。回归分析就是要找出一个数学模型Y=f(X),使得从X估计Y可以用一个函数式去计算。当Y=f(X)的形式是一个直线方程时,称为一元线性回归一元一元线性回归的主要利用两种方法1 最小二乘法2 梯度下降法我主要开始学习梯度下降法梯度下降法:梯度下降的基本过程就和下山的场景很类似。首先,我们有一个可微分的函数。...
原创
发布博客 2021.11.19 ·
536 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏