给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例:
输入: [2,1,5,6,2,3]
输出: 10
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
1.暴力解法
public int largestRectangleArea(int[] heights) {
int len = heights.length;
int area = 0;
if (len == 0) {
return 0;
}
if (len == 1) {
return heights[0];
}
//右扩展
for (int i = 0; i < len; i++) {
int widt = 1;
for (int j = i + 1; j < len; j++) {
if (heights[i] <= heights[j]) {
widt += 1;
} else {
break;
}
}
//左扩展
for (int j = i - 1; j >= 0; j--) {
if (heights[i] <= heights[j]) {
widt += 1;
} else {
break;
}
}
//计算面积
area = Math.max(area, widt * heights[i]);
}
return area;
}
2.单调栈+哨兵
单调栈
-
单调栈分为单调递增栈和单调递减栈
- 单调递增栈即栈内元素保持单调递增的栈
- 同理单调递减栈即栈内元素保持单调递减的栈
-
操作规则(下面都以单调递增栈为例)
- 如果新的元素比栈顶元素大,就入栈
- 如果新的元素较小,那就一直把栈内元素弹出来,直到栈顶比新元素小
-
加入这样一个规则之后,会有什么效果
- 栈内的元素是递增的
- 当元素出栈时,说明这个新元素是出栈元素向后找第一个比其小的元素
哨兵:在头尾加0,省去栈顶为0的情况
大致思路:
维护一个单调栈,栈中总是保存递增元素的索引,当遇到比栈顶元素小的元素时,将栈顶元素依次出栈,每次都计算出栈的元素能围成的最大面积,直到栈顶元素小于当前元素就停止出栈,再次进栈。
public int largestRectangleArea(int[] heights) {
int len = heights.length;
if (len == 0) {
return 0;
}
if (len == 1) {
return heights[0];
}
int area = 0;
int[] newHeights = new int[len + 2];
for (int i = 0; i < len; i++) {
newHeights[i + 1] = heights[i];
}
len += 2;
heights = newHeights;
//创建栈
Deque<Integer> stack = new ArrayDeque<>();
//哨兵
stack.addLast(0);
// System.out.println(heights[stack.peekLast()]);
for (int i = 1; i < len; i++) {
//栈里是下标
while (heights[stack.peekLast()] > heights[i]) {
//出栈的同时记录高
int height = heights[stack.removeLast()];
//计算宽,宽=当前下标-新栈顶下标-1
int width = i - stack.peekLast() - 1;
//计算面积,比较保留最大面积
area = Math.max(area, width * height);
}
将数组元素的下标压进栈
stack.addLast(i);
}
return area;
}