84. 柱状图中最大的矩形

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例:

输入: [2,1,5,6,2,3]
输出: 10

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

1.暴力解法

public int largestRectangleArea(int[] heights) {
        int len = heights.length;

        int area = 0;
        if (len == 0) {
            return 0;
        }
        if (len == 1) {
            return heights[0];
        }
        //右扩展
        for (int i = 0; i < len; i++) {
            int widt = 1;
            for (int j = i + 1; j < len; j++) {
                if (heights[i] <= heights[j]) {
                    widt += 1;
                } else {
                    break;
                }
            }
            //左扩展
            for (int j = i - 1; j >= 0; j--) {
                if (heights[i] <= heights[j]) {
                    widt += 1;
                } else {
                    break;
                }
            }
            //计算面积
            area = Math.max(area, widt * heights[i]);
        }
        return area;
    }

2.单调栈+哨兵
单调栈

  • 单调栈分为单调递增栈和单调递减栈

    • 单调递增栈即栈内元素保持单调递增的栈
    • 同理单调递减栈即栈内元素保持单调递减的栈
  • 操作规则(下面都以单调递增栈为例)

    • 如果新的元素比栈顶元素大,就入栈
    • 如果新的元素较小,那就一直把栈内元素弹出来,直到栈顶比新元素小
  • 加入这样一个规则之后,会有什么效果

    • 栈内的元素是递增的
    • 当元素出栈时,说明这个新元素是出栈元素向后找第一个比其小的元素

哨兵:在头尾加0,省去栈顶为0的情况
大致思路
维护一个单调栈,栈中总是保存递增元素的索引,当遇到比栈顶元素小的元素时,将栈顶元素依次出栈,每次都计算出栈的元素能围成的最大面积,直到栈顶元素小于当前元素就停止出栈,再次进栈。

public int largestRectangleArea(int[] heights) {
        int len = heights.length;
        if (len == 0) {
            return 0;
        }
        if (len == 1) {
            return heights[0];
        }

        int area = 0;
        int[] newHeights = new int[len + 2];
        for (int i = 0; i < len; i++) {
            newHeights[i + 1] = heights[i];
        }
        len += 2;
        heights = newHeights;
        //创建栈
        Deque<Integer> stack = new ArrayDeque<>();
        //哨兵
        stack.addLast(0);

//        System.out.println(heights[stack.peekLast()]);

        for (int i = 1; i < len; i++) {
            //栈里是下标
            while (heights[stack.peekLast()] > heights[i]) {
            //出栈的同时记录高
                int height = heights[stack.removeLast()];
                //计算宽,宽=当前下标-新栈顶下标-1
                int width  = i - stack.peekLast() - 1;
                //计算面积,比较保留最大面积
                area = Math.max(area, width * height);
            }
            将数组元素的下标压进栈
            stack.addLast(i);
        }
        return area;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值