渲染管线中的顶点变换

图形学 专栏收录该内容
4 篇文章 0 订阅

概述

在图形学渲染管线中,一个顶点坐标,大概要经历局部坐标系、世界坐标系、相机坐标系、裁剪坐标系,最后到窗口坐标系,显示在屏幕上。

坐标空间变换示意图

在这些过程中,从一个坐标系到另一个坐标系,都需要进行一定的变换。下面,将介绍每次变换的方式。

注意,本文是针对OpenGL的。

局部空间->世界空间

这一变换过程,主要是将模型放置在世界空间中,进行一定的缩放、旋转或平移。这一步比较简单,只要将相应的矩阵作用到模型的局部空间坐标即可。

比如,对模型缩放 ( S x , S y , S z ) \left(S_{x},S_{y},S_{z} \right) (Sx,Sy,Sz),然后绕Z轴旋转 θ \theta θ度,再进行 ( T x , T y , T z ) \left(T_{x},T_{y},T_{z} \right) (Tx,Ty,Tz)的平移。注意,这里的变换顺序是不能变的,即要先进行缩放,再进行旋转,最后进行平移。据此,我们可以构建模型变换矩阵。
M m o d e l = [ 1 0 0 T x 0 1 0 T y 0 0 1 T z 0 0 0 1 ] [ cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 1 0 0 0 0 1 ] [ S x 0 0 0 0 S y 0 0 0 0 S z 0 0 0 0 1 ] M_{model}= \begin{bmatrix} 1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} \cos{\theta} & -\sin{\theta} & 0 & 0 \\ \sin{\theta} & \cos{\theta} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} Mmodel=100001000010TxTyTz1cosθsinθ00sinθcosθ0000100001Sx0000Sy0000Sz00001

世界空间->相机空间

首先定义一下相机:

  • 坐标为 e ⃗ \vec{e} e

  • 观察方向 g ⃗ \vec{g} g

  • 向上方向 t ⃗ \vec{t} t

示意图如下所示:

相机坐标系示意图

有一个性质注意一下:**当相机和相机“看“到的物体一起变换时,相机”看“到的内容是不变的。**这样,可以将相机的坐标移动到世界坐标的原点,向上方向对齐世界坐标的Y轴,观察方向对齐世界坐标的-Z轴。然后,对物体进行相同的变换即可。

在数学上,这个过程大概这样:

  • 将相机移动到坐标原点
  • 旋转观察方向 g ⃗ \vec{g} g 到-Z轴
  • 旋转向上方向 t ⃗ \vec{t} t 到Y轴
  • 旋转( g ⃗ × t ⃗ \vec{g} \times \vec{t} g ×t )到X轴

大体分为两步:先位移,后旋转。即 M v i e w = R v i e w T v i e w M_{view} = R_{view}T_{view} Mview=RviewTview

平移部分:
T v i e w = [ 1 0 0 − x e 0 1 0 − y e 0 0 1 − z e 0 0 0 1 ] T_{view} = \begin{bmatrix} 1 & 0 & 0 & -x_{e} \\ 0 & 1 & 0 & -y_{e} \\ 0 & 0 & 1 & -z_{e} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} Tview=100001000010xeyeze1
对于旋转部分,先补充一些知识点。对于二维空间来说:
R θ = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) R_{\theta} = \begin{pmatrix} \cos{\theta} & -\sin{\theta} \\ \sin{\theta} & \cos{\theta} \\ \end{pmatrix} Rθ=(cosθsinθsinθcosθ)

R − θ = ( cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ) = R θ T R_{-\theta} = \begin{pmatrix} \cos{\theta} & \sin{\theta} \\ -\sin{\theta} & \cos{\theta} \\ \end{pmatrix} = R_{\theta}^\mathrm{T} Rθ=(cosθsinθsinθcosθ)=RθT

根据定义,旋转 θ \theta θ角度和旋转 − θ -\theta θ角度是互逆的,即: R − θ = R θ − 1 R_{-\theta} = R_{\theta}^{-1} Rθ=Rθ1

所以,对于旋转变换,可以得出旋转矩阵的逆等于它的转置,即:
R θ T = R θ − 1 R_{\theta}^\mathrm{T} = R_{\theta}^{-1} RθT=Rθ1
回到上面的旋转部分,直接求相机的坐标轴旋转到世界坐标轴的矩阵不是很方便,但是反过来,求世界坐标轴旋转到相机的坐标轴很容易:
R v i e w − 1 = [ x g ⃗ × t ⃗ x t ⃗ x − g ⃗ 0 y g ⃗ × t ⃗ y t ⃗ y − g ⃗ 0 z g ⃗ × t ⃗ z t ⃗ z − g ⃗ 0 0 0 0 1 ] R_{view}^{-1} = \begin{bmatrix} x_{\vec{g} \times \vec{t}} & x_{\vec{t}} & x_{-\vec{g}} & 0 \\ y_{\vec{g} \times \vec{t}} & y_{\vec{t}} & y_{-\vec{g}} & 0 \\ z_{\vec{g} \times \vec{t}} & z_{\vec{t}} & z_{-\vec{g}} & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} Rview1=xg ×t yg ×t zg ×t 0xt yt zt 0xg yg zg 00001
根据旋转矩阵的逆等于它的转置,得出:
R v i e w = ( R v i e w − 1 ) T = [ x g ⃗ × t ⃗ y g ⃗ × t ⃗ z g ⃗ × t ⃗ 0 x t ⃗ y t ⃗ z t ⃗ 0 x − g ⃗ y − g ⃗ z − g ⃗ 0 0 0 0 1 ] R_{view} = (R_{view}^{-1})^\mathrm{T} = \begin{bmatrix} x_{\vec{g} \times \vec{t}} & y_{\vec{g} \times \vec{t}} & z_{\vec{g} \times \vec{t}} & 0 \\ x_{\vec{t}} & y_{\vec{t}} & z_{\vec{t}} & 0 \\ x_{-\vec{g}} & y_{-\vec{g}} & z_{-\vec{g}} & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} Rview=(Rview1)T=xg ×t xt xg 0yg ×t yt yg 0zg ×t zt zg 00001
根据 M v i e w = R v i e w T v i e w M_{view} = R_{view}T_{view} Mview=RviewTview,可以得出:
M v i e w = R v i e w T v i e w = [ x g ⃗ × t ⃗ y g ⃗ × t ⃗ z g ⃗ × t ⃗ 0 x t ⃗ y t ⃗ z t ⃗ 0 x − g ⃗ y − g ⃗ z − g ⃗ 0 0 0 0 1 ] [ 1 0 0 − x e 0 1 0 − y e 0 0 1 − z e 0 0 0 1 ] M_{view} = R_{view}T_{view} = \begin{bmatrix} x_{\vec{g} \times \vec{t}} & y_{\vec{g} \times \vec{t}} & z_{\vec{g} \times \vec{t}} & 0 \\ x_{\vec{t}} & y_{\vec{t}} & z_{\vec{t}} & 0 \\ x_{-\vec{g}} & y_{-\vec{g}} & z_{-\vec{g}} & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_{e} \\ 0 & 1 & 0 & -y_{e} \\ 0 & 0 & 1 & -z_{e} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} Mview=RviewTview=xg ×t xt xg 0yg ×t yt yg 0zg ×t zt zg 00001100001000010xeyeze1

相机空间->裁剪空间

在一个顶点着色器运行的最后,期望所有的坐标都能落在一个特定的范围内,且任何在这个范围之外的点都应该被裁剪掉(Clipped)。被裁剪掉的坐标就会被忽略,所以剩下的坐标就将变为屏幕上可见的片段。这也就是裁剪空间(Clip Space)名字的由来。

因为将所有可见的坐标都指定在-1.0到1.0的范围内不是很直观,所以我们会指定自己的坐标集(Coordinate Set)并将它变换回标准化设备坐标系。

由投影矩阵创建的观察箱(Viewing Box)被称为平截头体(Frustum),每个出现在平截头体范围内的坐标都会最终出现在用户的屏幕上。将特定范围内的坐标转化到标准化设备坐标系的过程(而且它很容易被映射到2D观察空间坐标)被称之为投影(Projection),因为使用投影矩阵能将3D坐标投影(Project)到很容易映射到2D的标准化设备坐标系中。

这里要注意一下,OpenGL是右手坐标系的,但是在NDC中,是左手坐标系的,这里要特别注意!!!

相机空间转换到裁剪空间,有需要用到投影变换。有两种投影变换:正交投影和透视投影。下面分别介绍一下。

正交投影

我们先定义一个正交投影的视锥体 [ l , r ] × [ b , t ] × [ f , n ] [l,r] \times [b,t] \times [f,n] [l,r]×[b,t]×[f,n](注意,n和f都是负数,f是远平面,所以f<n),它是一个长方体。我们需要做的,就是将正交投影的视锥体转换到标准立方体(即标准化设备坐标, [ − 1 , 1 ] 3 [-1,1]^{3} [1,1]3)。注意,这里 [ f , n ] [f,n] [f,n]映射到NDC中的[1,-1]。

这里,分成两个步骤:平移和缩放。正交投影的矩阵如下:
M o r t h o = [ 2 r − l 0 0 0 0 2 t − b 0 0 0 0 2 f − n 0 0 0 0 1 ] [ 1 0 0 − r + l 2 0 1 0 − t + b 2 0 0 1 − n + f 2 0 0 0 1 ] = [ 2 r − l 0 0 − r + l r − l 0 2 t − b 0 − t + b t − b 0 0 2 f − n − f + n f − n 0 0 0 1 ] M_{ortho} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{f-n} & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} Mortho=rl20000tb20000fn2000011000010000102r+l2t+b2n+f1=rl20000tb20000fn20rlr+ltbt+bfnf+n1

透视投影

对于透视投影,分成两步操作:

  • 首先,“压扁”视锥体成一个长方体(n->n,f->f)( M p e r s p − > o r t h o M_{persp->ortho} Mpersp>ortho);
  • 然后,做正交投影操作( M o r t h o M_{ortho} Mortho,即上面的正交投影)。

透视投影和正交投影的视锥体示意图

观察下图:

从X轴观察

根据相似三角形的关系,可以得出:
y ′ = n z y y^{'} = \frac{n}{z}y y=zny
类似的,可以得出:
x ′ = n z x x^{'} = \frac{n}{z}x x=znx
由此,可以得出下面的关系:
M p e r s p − > o r t h o ( 4 × 4 ) ( x y z 1 ) = ( n z x n z y u n k n o w n 1 ) M_{persp->ortho}^{(4 \times 4)} \begin{pmatrix} x\\ y\\ z\\ 1\\ \end{pmatrix}= \begin{pmatrix} \frac{n}{z}x \\ \frac{n}{z}y \\ unknown \\ 1 \\ \end{pmatrix} Mpersp>ortho(4×4)xyz1=znxznyunknown1

下面,说一个齐次坐标的性质:在3D坐标系统中, ( x , y , z , 1 ) \left ( x,y,z,1 \right ) (x,y,z,1) ( k x , k y , k z , k ≠ 0 ) \left ( kx,ky,kz,k \neq 0 \right ) (kx,ky,kz,k=0) ( x z , y z , z 2 , z ≠ 0 ) \left ( xz,yz,z^{2},z \neq 0 \right ) (xz,yz,z2,z=0)都表示相同的坐标— ( x , y , z ) \left ( x,y,z \right ) (x,y,z)。例如: ( 1 , 0 , 0 , 1 ) \left ( 1,0,0,1 \right ) (1,0,0,1) ( 2 , 0 , 0 , 2 ) \left ( 2,0,0,2 \right ) (2,0,0,2)都表示坐标 ( 1 , 0 , 0 ) \left ( 1,0,0 \right ) (1,0,0)

所以,有如下关系:
M p e r s p − > o r t h o ( 4 × 4 ) ( x y z 1 ) = ( n z x n z y u n k n o w n 1 ) = ( n x n y u n k n o w n z ) M_{persp->ortho}^{(4 \times 4)} \begin{pmatrix} x\\ y\\ z\\ 1\\ \end{pmatrix}= \begin{pmatrix} \frac{n}{z}x \\ \frac{n}{z}y \\ unknown \\ 1 \\ \end{pmatrix} = \begin{pmatrix} nx \\ ny \\ unknown \\ z \\ \end{pmatrix} Mpersp>ortho(4×4)xyz1=znxznyunknown1=nxnyunknownz
更进一步的,可以得到:
M p e r s p − > o r t h o = ( n 0 0 0 0 n 0 0 ? ? ? ? 0 0 1 0 ) M_{persp->ortho} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ ? & ? & ? & ? \\ 0 & 0 & 1 & 0 \\ \end{pmatrix} Mpersp>ortho=n0?00n?000?100?0
现在,还剩下第三列是未知的。

经过观察上面的透视投影视锥体,可以得出以下推论:

  1. 近平面上的点的坐标都不会改变;

  2. 远平面上的点,Z坐标不改变。

根据推论1,近平面上的点 ( x , y , n , 1 ) \left (x,y,n,1 \right ) (x,y,n,1)经过变换后,不会改变。即:
M p e r s p − > o r t h o ( x y n 1 ) = ( x y n 1 ) = ( n x n y n 2 n ) M_{persp->ortho} \begin{pmatrix} x \\ y \\ n \\ 1 \\ \end{pmatrix} = \begin{pmatrix} x \\ y \\ n \\ 1 \\ \end{pmatrix} = \begin{pmatrix} nx \\ ny \\ n^{2} \\ n \\ \end{pmatrix} Mpersp>orthoxyn1=xyn1=nxnyn2n
根据:
M p e r s p − > o r t h o ( x y z 1 ) = ( n x n y u n k n o w n z ) M_{persp->ortho} \begin{pmatrix} x\\ y\\ z\\ 1\\ \end{pmatrix}= \begin{pmatrix} nx \\ ny \\ unknown \\ z \\ \end{pmatrix} Mpersp>orthoxyz1=nxnyunknownz
因为 n 2 n^{2} n2与x和y都没有关系,所以可以得出 M p e r s p − > o r t h o M_{persp->ortho} Mpersp>ortho的第三列的形式是 ( 0 , 0 , A , B ) \left (0,0,A,B \right ) (0,0,A,B)

根据:
( 0 , 0 , A , B ) ( x y n 1 ) = n 2 \left(0,0,A,B \right) \begin{pmatrix} x \\ y \\ n \\ 1 \\ \end{pmatrix} = n^{2} (0,0,A,B)xyn1=n2
可以得出:
A n + B = n 2 An+B = n^{2} An+B=n2
根据推论2,远平面的中心点 ( 0 , 0 , f , 1 ) \left (0,0,f,1 \right) (0,0,f,1),经过变换后,还是本身。如下:
M p e r s p − > o r t h o ( 0 0 f 1 ) = ( 0 0 f 1 ) = ( 0 0 f 2 f ) M_{persp->ortho} \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ f^{2} \\ f \\ \end{pmatrix} Mpersp>ortho00f1=00f1=00f2f
所以,可以得出:
( 0 , 0 , A , B ) ( 0 0 f 1 ) = f 2 \left(0,0,A,B \right) \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \\ \end{pmatrix} = f^{2} (0,0,A,B)00f1=f2

即:
A f + B = f 2 Af + B = f^{2} Af+B=f2
到这里,可以得出方程组:
{ A n + B = n 2 A f + B = f 2 ⇒ A = n + f B = − n f \begin{cases} An + B = n^{2} \\ Af + B = f^{2} \\ \end{cases} \Rightarrow \begin{matrix} A = n + f \\ B = -nf \\ \end{matrix} {An+B=n2Af+B=f2A=n+fB=nf
到这里,可以得出 M p e r s p − > o r t h o M_{persp->ortho} Mpersp>ortho:
M p e r s p − > o r t h o = [ n 0 0 0 0 n 0 0 0 0 n + f − n f 0 0 1 0 ] M_{persp->ortho} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} Mpersp>ortho=n0000n0000n+f100nf0
最终,透视投影矩阵:
M p e r s p = M o r t h o M p e r s p − > o r t h o = [ 2 n r − l 0 l + r l − r 0 0 2 n t − b b + t b − t 0 0 0 f + n f − n 2 n f n − f 0 0 1 0 ] M_{persp} = M_{ortho}M_{persp->ortho} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & \frac{2nf}{n-f} \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} Mpersp=MorthoMpersp>ortho=rl2n0000tb2n00lrl+rbtb+tfnf+n100nf2nf0

裁剪空间->窗口空间

在裁剪空间的最后,所以的可见的点都在标准设备坐标系(NDC)中,即坐标坐落在范围 [ − 1 , 1 ] 3 [-1,1]^{3} [1,1]3内。

先不考虑Z轴的变换。

从NDC到窗口空间,需要经过视口变换。定义一个屏幕空间: ( 0 , 0 , w , h ) \left (0,0,w,h \right) (0,0,w,h)。平面左下角的坐标位 ( 0 , 0 ) \left (0,0 \right) (0,0),右上角的坐标为 ( w , h ) \left (w,h \right) (w,h)。对于X和Y坐标的变换,即从 ( − 1 , 1 ) × ( − 1 , 1 ) \left(-1,1\right) \times \left(-1,1\right) (1,1)×(1,1) ( 0 , w ) × ( 0 , h ) \left(0,w\right) \times \left(0,h\right) (0,w)×(0,h)

这里,经过两步变换:

  1. 将NDC的中心平移到窗口的中心;
    T v i e w p o r t = ( 1 0 0 w 2 0 1 0 h 2 0 0 1 0 0 0 0 1 ) T_{viewport} = \begin{pmatrix} 1 & 0 & 0 & \frac{w}{2} \\ 0 & 1 & 0 & \frac{h}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} Tviewport=1000010000102w2h01

  2. 将NDC的大小缩放到屏幕的大小。

R v i e w p o r t = ( w 2 0 0 0 0 h 2 0 0 0 0 1 0 0 0 0 1 ) R_{viewport} = \begin{pmatrix} \frac{w}{2} & 0 & 0 & 0 \\ 0 & \frac{h}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} Rviewport=2w00002h0000100001

合并到一起:
M v i e w p o r t = R v i e w p o r t T v i e w p o r t = ( w 2 0 0 w 2 0 h 2 0 h 2 0 0 1 0 0 0 0 1 ) M_{viewport} = R_{viewport}T_{viewport} = \begin{pmatrix} \frac{w}{2} & 0 & 0 & \frac{w}{2} \\ 0 & \frac{h}{2} & 0 & \frac{h}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} Mviewport=RviewportTviewport=2w00002h0000102w2h01
对于Z坐标,从 ( − 1 , 1 ) \left(-1,1\right) (1,1)映射到了 ( 0 , 1 ) \left(0,1\right) (0,1)。这里只是简单的线性映射。假设 z ′ = A z + B z^{'} = Az+B z=Az+B,当 z z z等于-1时, z ′ z^{'} z等于0;当 z z z等于1时, z ′ z^{'} z等于1。可得如下方程组:
{ A ( − 1 ) + B = 0 A ( 1 ) + B = 1 ⇒ { A = 1 2 B = 1 2 \begin{cases} A(-1) + B = 0 \\ A(1) + B = 1 \\ \end{cases} \Rightarrow \begin{cases} A = \frac{1}{2} \\ B = \frac{1}{2} \\ \end{cases} {A(1)+B=0A(1)+B=1{A=21B=21
所以, z ′ = 1 2 z + 1 2 z^{'} = \frac{1}{2}z + \frac{1}{2} z=21z+21。代入上述 M v i e w p o r t M_{viewport} Mviewport矩阵,可得:
M v i e w p o r t = ( w 2 0 0 w 2 0 h 2 0 h 2 0 0 1 2 1 2 0 0 0 1 ) M_{viewport} = \begin{pmatrix} \frac{w}{2} & 0 & 0 & \frac{w}{2} \\ 0 & \frac{h}{2} & 0 & \frac{h}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} Mviewport=2w00002h00002102w2h211

参考

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

打赏

longfeiah

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值