泛函分析 04.01 有界线性算子 - 有界线性算子与有界线性泛函

线 

数学主要研究的对象是函数、运算.
在这之前我们关注的空间基本上是函数空间(或数列组成的空间).
建立了距离空间、赋范空间、内积空间、Hilbert空间的概念.
运用类比、联想、归纳等数学研究方法, 把有限维空间的代数结构
和几何特征延伸、拓展到无穷维空间.
许多数学问题,例如:中学解析几何中的平移和旋转是线性变换(运算).
高等数学研究微分积分,而微分、积分也都是线性运算,
它们与 R n   空间中线性变换有很多相同的运算性质.
线性方程组、微分方程、积分方程都可以看做是特定空间中的线性
运算(或者称为线性变换或线性映射).
我们将把它们称之为线性算子.
线性算子是泛函分析中最重要的基本概念之一.
我们将全体有界线性算子看作一个线性空间,并赋予范数,
成为赋范空间,线性算子看作赋范空间中的元素.
线性算子空间是线性泛函分析研究的主要对象.
在线性算子空间的框架下,研究线性运算的性质,解决
分析、代数、几何中的问题.
在赋范空间中讨论有界线性算子的本质特征,我们可以
得到一些很深刻的结论:
一致有界原则;
开映射定理、逆算子定理;
闭图像定理.

§4.1线线 

4.1.1线线 

线: 
(x+y)  =x  +y  ,(αx)  =αx  , 
线: 
(x+y)dt=xdt+ydt, 
αxdt=αxdt, 
T(αx+βy)=αTx+βTy. 
,线 

4.1.1X,X 1 ,D(T)X线 
,TD(T)X 1 , 
T(x+y)=Tx+Ty, 
T(αx)=αTx, 
x,yD(T),αK(K), 
TXX 1 线. 
D(T)T 
1,D(T)X. 
D(T)=X,TXX 1 线. 
2X 1 =K(),T:D(T)K,线 
线. 
线T(f)XK线. 
K,线. 
K,线. 
线线. 

4.1.2TXX 1 线, 
M>0,使 
Tx 1 Mx,xX.(4.1.1) 
T线. 
线f,M>0, 
使 
|f(x)|Mx,xX.(4.1.2) 
f线. 
1:线(). 
:R,y=Tx=x. 
Tx=xRR线,T 
线((4.1.1)M=1). 
线. 
2:,,, 
线线. 

4.1.3线. 

4.1.4X,X 1 ,TXX 1 线 
,x n x 0 ,Tx n Tx 0 ,Tx 0 . 
线线,线 
: 

4.1.5X,X 1 ,TXX 1 线, 
T:XX 1 .Tx 0 ,TX. 
:TX, 
:Xy,Ty. 
:y n y,Ty n Ty. 
:Tx 0 , 
x n x 0 Tx n Tx 0 . 
y n y,y n y0,y n y+x 0 x 0 . 
T(y n y+x 0 )Tx 0 ,线, 
T(y n y)+Tx 0 Tx 0 . 
T(y n y)0.T线Ty n Ty. 
1:线,. 
2:线T: 
lim n T(x n )=T(lim n x n ), 
T. 

4.1.6X,X 1 ,TXX 1  
线,TT. 
:TT. 
.(1)T,n>0,x n ,使 
Tx n >nx n . 
(2)y n =x n nx n  .y n 0,y n 0. 
T,Ty n T0=0. 
Ty n =1n Tx n x n  >1. 
Ty n 0.T. 
"TT. 
:x n x,Tx n Tx. 
,x n x,T,M>0,使 
xX,TxMx. 
Tx n Tx=T(x n x) 
Mx n x0(n), 
T. 
:线. 
线T, 
lim n T(x n )=T(lim n x n ). 
线(线). 

4.1.2线 

线, 
线,线. 
线. 

4.1.7X,X 1 ,B(X,X 1 ) 
XX 1 线. 
X=X 1 ,B(X,X 1 )B(X). 
B(X,X 1 )线. 
A,BB(X,X 1 )αK,: 
(A+B)(x)=Ax+Bx,(αA)(x)=αAx. 
 
(A+B)x=Ax+Bx 
Ax+Bx 
(M 1 +M 2 )x, 
αAx=|α|Ax|α|M 1 x. 
B(X,X 1 ),线. 
线, 
线. 

4.1.8TXX 1 线, 
M>0,使 
TxMx,xX.(4.1.3) 
 
T=sup xX,x0 Txx ,(4.1.4) 
T线T. 
:(4.1.3),(4.1.4) 
T=sup xX,x0 Txx sup xX,x0 Mxx =M. 
T(). 
Txx T,TxTx. 
T使TxMxM, 
T=inf{M|TxMx,xX}.(4.1.5) 
 
T,2.1.14. 

4.1.9(4.1.4)T线 
B(X,X 1 ), 
T=sup xX,x0 Txx . 
:(i)()T=sup xX,x0 Txx 0; 
(ii)()T=sup xX,x0 Txx =0 
Tx=0,xX,x0,T=0; 
(iii)()αT=sup xX,x0 αTxx =|α|sup xX,x0 Txx ; 
(iv)() 
T 1 +T 2 =sup xX,x0 (T 1 +T 2 )xx sup xX,x0 T 1 x+T 2 xx  
sup xX,x0 T 1 xx +sup xX,x0 T 2 xx =T 1 +T 2 . 
T. 
:(B(X,X 1 ),). 
B(X,X 1 )线. 

4.1.10TXX 1 线, 
T=sup x=1 Tx=sup x1 Tx(4.1.6) 
: 
T=sup xX,x0 Txx sup x0,x1 Txx  
sup x0,x1 Tx=sup x1 Txsup x=1 Tx(4.1.7) 
,yX,y0, 
Tyy sup x=1 Tx, 
, 
sup yX,y0 Tyy sup x=1 Tx, 
Tsup x=1 Tx. 
(4.1.7): 
Tx=sup x=1 Tx=sup x1 Tx. 
A,BB(X), 
(AB)(x)=A(Bx)(AB). 
AB线, 
ABAB(4.1.8) 
,xX, 
(AB)x=A(Bx)ABx 
ABx, 
,(4.1.8). 
 
A n A n .(4.1.9) 

4.1.3线 

4.1.11nA=(a ij )(i,j=1,2,,n), 
xR n ,x=(ξ 1 ,,ξ n ), 
Ax=(a ij )⎛ ⎝ ⎜ ⎜ ξ 1 ξ n  ⎞ ⎠ ⎟ ⎟ =⎛ ⎝ ⎜ ⎜ η 1 η n  ⎞ ⎠ ⎟ ⎟ =y,(4.1.10) 
η i = j=1 n a ij ξ j .AR n R n 线. 
Ax=( i=1 n |η i | 2 ) 12  =( i=1 n | j=1 n a ij ξ j | 2 ) 12   
( i=1 n  j=1 n |a ij | 2 ) 12  ( j=1 n |ξ j | 2 ) 12  =( i=1 n  j=1 n |a ij | 2 ) 12  x. 
A线. 
,A( i=1 n  j=1 n |a ij | 2 ) 12   
:线线. 

4.1.12(X,),(Y,), 
TXY线,T线. 
:(1)X: 
x 1 =x+Tx(4.1.11) 
 1 , 
x+y 1 =x+y+T(x+y)=x+y+Tx+Ty 
x+y+Tx+Ty=x 1 +y 1  
 1 X. 
(2)X, 
, 
 1 ,:K>0,使 
xX, 
x 1 Kx(4.1.12) 
(3)(4.1.11)(4.1.12), 
Txx 1 Kx, 
T. 
:线. 

 
4.1.13(a ij ),: 
 i=1   k=1  |a ik | q <(q>1) 
xl p (1p +1q =1),x=(ξ 1 ,ξ 2 ,,ξ k ,), 
η i = k=1  a ik ξ k (i=1,2,), 
线:Tx=y,y=(η 1 ,η 2 ,,η k ,), 
Tl p l q 线. 
, 
 i=1  |η i | q = i=1  | k=1  a ik ξ k | q  
 i=1  {( k=1  |a ik | q ) 1q  ( k=1  |ξ k | p ) 1p  } q  
= i=1   k=1  |a ik | q x q . 
 
Tx q =y q ( i=1   k=1  |a ik | q ) 1q  x 
Tl p l q 线. 

4.1.14TC[0,1]R: 
T(x)=x(0),xC[0,1], 
T线. 
, 
|T(x)|=|x(0)|sup{|x(t)||t[0,1]}=x 
T1. 
,x 0 (t)1C[0,1], 
T(x 0 )=1=x, 
,T=1. 
线:1.线, 
2.线. 

4.1.15X线,X 
XR, 
f(x)=x:XR, 
f,线. 
f.f线,x0, 
0=0=f(0)=f(x+(x))=f(x)+f(x) 
=x+x=2x. 
.线. 

4.1.16a=(a 1 ,a 2 ,,a n )R n . 
x=(x 1 ,x 2 ,,x n )R n , 
f(x)= i=1 n a i x i (4.1.13) 
fR n 线. 
:(1)fR n 线. 
f(αx+βy)= i=1 n a i (αx i +βy i ) 
=α i=1 n a i x i +β i=1 n a i y i  
=αf(x)+βf(y). 
(2)Ho ¨ lder. 
|f(x)|=| i=1 n a i x i | i=1 n |a i x i | 
( i=1 n |a i | 2 ) 12  ( i=1 n |x i | 2 ) 12  =ax 
fR n 线. 
:,R n  
(4.1.13),f(x)=(a,x). 
R n 线f,R n a. 
R 3 ,a=(a 1 ,a 2 ,a 3 ) 
f(x)=a 1 x 1 +a 2 x 2 +a 3 x 3 =0. 
5Riesz. 

4.1.17y 0 (t)[a,b], 
xC[a,b], 
f(x)= b a x(t)y 0 (t)dt(4.1.14) 
fC[a,b]线. 
, 
|f(x)| b a |x(t)y 0 (t)|dt 
 b a |y 0 (t)|max atb |x(t)|dt=( b a |y 0 (t)|dt)x, 
fC[a,b]线. 
1:f= b a |y 0 (t)|dt. 
2:,y 0 (t)1,f(x)= b a x(t)dt 
C[a,b]线. 
线, 
. 

4.1.18()X=C[0,1], 
T:D(T)C[0,1]C[0,1], 
Tx(t)=x  (t), 
D(T)={x(t)C[0,1]|x(t)}. 
:T线. 
,sinntC[0,1],: 
T(sinnt)=ncosnt,x n =1,(n2) 
Tx n =n(n). 
T(D(T)). 
线. 
,线. 
(4.5) 
线. 

4.1.4线 

4.1.19TL[a,b]C[a,b]线: 
(Tx)(t)= t a x(τ)dτ, 
T,T=1. 
:(1)xL[a,b]: 
x= b a |x(τ)|dτ=1, 
 
Tx=max atb | t a x(τ)dτ| 
max atb  t a |x(τ)|dτ= b a |x(τ)|dτ=1, 
T1. 
(2), 
x 0 (t)=1ba L[a,b],x 0 =1, 
 
TTx 0 =max atb | t a x 0 (τ)dτ| 
=max atb  t a 1ba dτ=1. 
T=1. 
线TL[a,b]L[a,b]线, 
T=ba. 

4.1.20()K(t,s)at,sb 
. 
Kx(t)= b a K(t,s)x(s)ds(4.1.15) 
KC[a,b]C[a,b]线, 
K=max atb  b a |K(t,s)|ds. 
(1): 
Kx=max atb | b a K(t,s)x(s)ds| 
(max atb  b a |K(t,s)|ds)x=βx(4.1.16) 
 
β=max atb  b a |K(t,s)|ds, 
Kβ.K线. 
(2), b a K(t,s)dst, 
 
β=max atb  b a |K(t,s)|ds, 
t 0 [a,b],使 
β= b a |K(t 0 ,s)|ds, 
 
x 0 (s)=sgnK(t 0 ,s), 
x 0 (s),|x 0 (s)|1. 
,n,[a,b]x n (s), 
使|x n (s)|1, 
12Mn E n ,x n (s)=x 0 (s), 
M=max atb,asb K(t,s). 

 
β= b a |K(t 0 ,s)|ds=| b a K(t 0 ,s)x 0 (s)ds| 
| b a K(t 0 ,s)x n (s)ds|+| b a K(t 0 ,s)(x 0 (s)x n (s))ds| 
Kx n +2MmE n K+1n  
n,βK. 
(4.1.16),K=β. 

  • 10
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值