泛函分析 04.03 有界线性算子 - 一致有界原则

§4.3 

线线. 
使线. 
线(线),线. 
,: 
(4.3.7); 
(4.4.4),(4.4.5); 
(4.5.7). 
HahnBanach5.1.1(线 
)线. 
Banach线. 
Baire, 
,. 

4.3.1Baire 

4.3.1(X,d),EX.E 
X,E. 
:A,BX,B ¯ ¯ ¯  A, 
BA. 
1E. 
,xE,S(x,r)E,ES(x,r). 
2Cantor. 
Cantor. 

4.3.2E, 
E= n=1  E n , 
E n (n=1,2,), 
E. 
. 

4.3.3(Baire). 
:., 
X= n=1  E n , 
E n (n=1,2,). 
 
(1)S,E 1 S(E ¯ ¯ ¯   1 S), 
SE ¯ ¯ ¯   1 (E ¯ ¯ ¯   1 ). 
S,S ¯ ¯   1 S,使 
S ¯ ¯   1 E 1 =S ¯ ¯   1 1. 
(2)S 1 ,E 2 S 1 ,S ¯ ¯   2 S 1 ,使 
S ¯ ¯   2 E 2 =S ¯ ¯   2 12 . 
(3), 
S ¯ ¯   1 S ¯ ¯   2 S ¯ ¯   n ,S ¯ ¯   n r n <12 n1  . 
(4)X,r n 0, 
x 0 X,x 0  n=1  S ¯ ¯   n . 
S ¯ ¯   n E n =,n,x 0 S ¯ ¯   n ,x 0  ¯ ¯  E n , 
X= k=1  E n . 
X,X. 

4.3.4Banach. 

4.3.5E[0,1], 
E,EC[0,1]E. 
证明参阅张恭庆等《泛函分析讲义》(上册)p92.

: 
, 
. 
,. 
. 
Weierstrass. 
4.3.6 
f(x)= n=0  a n cos(b n πx),(4.3.1) 
0<a<1,b,ab>1+32 π. 
,. 
f(x). 
p.88 
Baire. 

4.3.2 

,线,: 
线. 

4.3.7(BanachSteinhaus) 
{T α |αI}BanachXX 1  
线.xX, 
sup α T α x<(4.3.2) 
{T α |αI}. 
: 
(1)XBanach, 
(2)T线,X. 
,xX,M x >0,使 
T α xsup α T α x=M x <(4.3.3) 
M,使 
T α M,αI(4.3.4) 
,(). 
: 

4.3.8{T α |αI}BanachX 
X 1 线,sup α T α =, 
xX,使 
sup αI T α x=(4.3.5) 
. 
: 
:{T α |αI}线 
(). 
:sup α T α x<, 
xX,M x >0,使 
T α xsup α T α x=Mx<(4.3.6) 
:M,使 
T α M,αI(4.3.7) 
xX,αI,T α xMx. 
: 
(1){T α |αI}. 
r>0,使 
T α xM<,xB(0,r) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  ,αI. 
(2)线, 
xX,αI,T α (rxx )M, 
T α xMr 1 x, 
. 
3(1). 
 
M k ={x|T α xk,αI}(k=1,2,) 
M k ={xX|sup αI T α xk} 
= αI {xX|T α x<k}, 
{T α }M k ,k. 
:xX,M x >0,使 
T α xsup α T α x=M x <, 
xX,xM k , 
X= k=1  M k . 
XBanach,,M k 0  , 
G,GM ¯ ¯ ¯ ¯   k 0  . 
B ¯ ¯ ¯  ,B ¯ ¯ ¯  M ¯ ¯ ¯ ¯   k 0   
,M ¯ ¯ ¯ ¯   k 0  , 
B ¯ ¯ ¯  M ¯ ¯ ¯ ¯   k 0  =M k 0  , 
{T α },k 0 . 
,T线, 
使. 
(1){T α |αI}. 
(i)kN + , 
M k ={xX|sup αI T α xk}= αI {xX|T α xk}, 
:xX, 
T α xsup α T α x=M x <, 
xX,xM k , 
X= k=1  M k  
XBanach,X. 
,k 0 ,使M k 0  . 
M k 0  XG,GM ¯ ¯ ¯ ¯   k 0  . 
(ii)G,x 0 G, 
B ¯ ¯ ¯  ={xX|xx 0 r}G, 
M k 0  B ¯ ¯ ¯  , 
B ¯ ¯ ¯  ={xX|xx 0 r}GM ¯ ¯ ¯ ¯   k 0  . 
T α xx,αI, 
{xX|T α xk} 
,M k = αI {xX|T α xk}. 
B ¯ ¯ ¯  M ¯ ¯ ¯ ¯   k 0  =M k 0  ={xX|sup αI T α xk 0 }. 
:xB ¯ ¯ ¯  ,αI,T α xk 0 , 
{T α }B ¯ ¯ ¯  . 
(iii){T α |αI}B ¯ ¯ ¯   0 ={xX|xr}. 
xB ¯ ¯ ¯   0 ={xX|xr}, 
x+x 0 B ¯ ¯ ¯  ={xX|xx 0 r}, 
T α xT α (x+x 0 )+T α x 0 2k 0 ,αI. 
(2)线,{T α }. 
xX,rxx B ¯ ¯ ¯   0 ,T α rxx 2k 0 . 
T α x2k 0 x/r. 
 
T α 2r k 0 =M,αI, 
sup α T α M<. 
1XBanachX. 
X. 
2线,线, 
(30). 
30FX, 
xX,M x >0,使fF, 
|f(x)|M x , 
UM>0,使xU,fF 
|f(x)|M, 
U,f(x). 

4.3.9XBanach,f α (αI)X线, 
xX, 
sup αI |f α (x)|<, 
{f α |αI}. 

4.3.10I,XBanach 
,{f n }X线, 
xX, 
sup n |f n (x)|<, 
 
sup n f n <. 

4.3.11I, 
XBanach,{f n }X线,sup n f n =. 
x 0 X,使 
sup n |f n (x 0 )|=. 
. 
4.4.6. 

4.3.3 

4.2.5,X,X 1 Banach, 
B(X,X 1 )Banach. 
Cauchy(). 
. 

4.3.12X,X 1 Banach,B(X,X 1 ). 
:: 
(1)T n B(X,X 1 ), 
(2)xX,{T n x}X 1 Cauchy, 
TB(X,X 1 ),T n   T(n), 
xX,T n xTx(n). 
:T n B(X,X 1 ),xX,{T n x}X 1  
Cauchy. 
(i)()线T. 
X 1 ,{T n x}Cauchy,zX,使 
T n xz,Tx=z(T n xz=Tx(n)). 
(ii)T使线.TB(X,X 1 ). 
,xX, 
sup n T n x<. 
X,,{T n }, 
Tx=lim n T n x=lim n T n xlim − − −   n T n x, 
T线,Tlim − − −   n T n . 
:TB(X,X 1 ),T n   T(n). 
1: 
XBanach,X 1 Banach. 
2,X,X 1 Banach, 
(1)T n B(X,X 1 ), 
(2)xX,{T n x}X 1 Cauchy, 
{T n }XBanach(2). 
3,(1),(2), 
X,. 

4.3.13{T n }XBanach 
X 1 线, 
(i){T n }; 
(ii)GX,yG,{T n y}; 
线T(TB(X,X 1 )),使 
T n   T(n),Tlim − − −   n T n (4.3.8) 
:(1)线T(Tx=?). 
(i)GX,xX,yG,使 
xy<ε. 
(ii)yG,{T n y},{T n y} 
Cauchy. 
(iii){T n },: 
T n xT m xT n xT n y+T n yT m y+T m yT m x 
T n xy+T n yT m y+T m xy, 
T n xT m x0(m,n). 
{T n x}Cauchy. 
X 1 Banach.z,使 
T n xz0(n) 
Tx=z,Tx=z=lim n T n x 
T线. 
(2)T. 
Tx=lim n T n x=lim n T n xlim − − −   n T n x, 
T线,Tlim − − −   n T n . 
:TB(X,X 1 ),T n   T(n) 
:X,X 1 Banach,T n   T(n) 
 
(i){T n }; 
(ii)GX,yG,{T n y}. 

4.3.4 

4.3.14(Fourier) 
:f n (n), 
x 0 ,使|f n (x 0 )|(). 
: 
,t 0 ,Fourier. 
:C 2π ={线2π}. 
C 2π  
x  =max <t< |x(t)|. 
(C 2π ,)Banach). 
x(t)C 2π ,Fourier 
x(t)a 0 2 + k=1  (a k coskt+b k sinkt)(4.3.9) 
 
a 0 2 =12π  π π f(x)dx, 
a k =1π  π π f(x)coskxdx,b k =1π  π π f(x)sinkxdt. 
x(t),x  (t),Fourierx(t). 
 
x(t)C 2π ,Fourier? 
n,Fourier2n+1. 
x(t)2n+1Fourier 
a 0 2 + k=1 n (a k coskt+b k sinkt) 
= π π x(s)[12π +1π  k=1 n cosk(st)]ds 
= π π x(s)k n (s,t)ds. 
k n (s,t)=sin(n+12 )(st)2πsin12 (st) (4.3.10) 
t=t 0 ,x(t)2n+1t 0  
f n (x)= π π x(s)k n (s,t 0 )ds, 
x(t)线. 
x(t),Fouriert 0 . 
,t=0, 
x(t),Fouriert=0. 
t=0,(4.3.10), 
k n (s,0)=sin(n+12 )(s)2πsin12 s =12π +1π  k=1 n cosks. 
(1)C 2π 线. 
f n (x)= π π x(s)k n (s,0)ds 
(2)C 2π 线, 
f n = π π |k n (s,0)|ds 
(3)f n (n). 
f n = π π |k n (s,0)|ds= 2π 0 |k n (s,0)|ds() 
=12π  2π 0 |sin(n+12 )s||sin12 s| ds(s=2t) 
=1π  2π 0 |sin(n+12 )2t||sint| dt(|sint||t|) 
1π  π 0 |sin(2n+1)t|t dt(u=(2n+1)t) 
=(1π  (2n+1)π 0 sinuu2n+1  du)12n+1  
=1π  (2n+1)π 0 |sinu|u du. 
,广  0 |sinu|u du=,: 
f n = π π |k n (s,0)|ds 
=1π  (2n+1)π 0 |sinu|u du(n). 
,x 0 C 2π ,{f n (x 0 )}, 
x 0 (t),t=0Fourier. 
1()Fourier. 
x(t)x(t+0)+x(t0)2 . 
2,Fourier, 
1876,Paul.duBoisReymond. 
T n (x,n)=cosnxn +cos(n+1)xn1 ++cos(n+(n1))x1 cos(n+(n+1))x1 cos(n+2n)xn  
= k=1 n cos(2nk)xcos(2n+k)xk  
 
f(x)= p=1  1p 2  T(x,2 p 3  ). 
f(x),f(x)Fourier0. 
这是1911年, Fe ´ jer  提供的例子(参阅汪林:实分析中的反例, p.369).
3使, 
x 0 (t),t=0Fourier. 
,,,. 
41966,Carleson:L 2  
Fourier. 
Fourier. 

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值