泛函分析笔记08:有界线性算子和泛函介绍与共鸣定理

第三章:有界线性算子

3.1有界线性算子与有界线性泛函

定义4.1: 设 X , X 1 X, X_{1} X,X1 为赋范空间, T : X → X 1 T: X \rightarrow X_{1} T:XX1 为线性算子(映射), 若存在常数 M ≥ 0 M \geq 0 M0 使得
∥ T x ∥ ≤ M ∥ x ∥ , ∀ x ∈ X \|T x\| \leq M\|x\|, \quad \forall x \in X TxMx,xX
则称 T T T 是有界的。

注: T T T 是有界的 ⟺ T \Longleftrightarrow T T X X X 中的有界集映为 X 1 X_{1} X1 中 的有界集 ⟺ T \Longleftrightarrow T T X X X 的某 r r r B ( θ , r ) B(\theta, r) B(θ,r) 映为 X 1 X_{1} X1 中的有界 集 ( r > 0 ) (r>0) (r>0)

定理4.2: 设 T : X → X 1 T: X \rightarrow X_{1} T:XX1 线性, 则 T T T X X X 上连续 ⟺ \Longleftrightarrow T T T 在某点 x 0 ∈ X x_{0} \in X x0X 连续 ⟺ T \Longleftrightarrow T T 有 界

算子范数

∥ T ∥ = inf ⁡ { M ≥ 0 : ∥ T x ∥ ≤ M ∥ x ∥ , ∀ x ∈ X } \|T\|=\inf \{M \geq 0:\|T x\| \leq M\|x\|, \forall x \in X\} T=inf{M0:TxMx,xX} 为有界线性算子 T T T 的范数。
注:

  • 上述下确界是可达的且 ∥ T x ∥ ≤ ∥ T ∥ ∥ x ∥ , ∀ x ∈ \|T x\| \leq\|T\|\|x\|, \quad \forall x \in TxTx,x X ; X ; X;
  • ∥ T ∥ = sup ⁡ ∥ x ∥ ≤ 1 ∥ T x ∥ = sup ⁡ ∥ x ∥ = 1 ∥ T x ∥ = sup ⁡ x ≠ θ ∥ T x ∥ ∥ x ∥ ≜ M \|T\|=\sup _{\|x\| \leq 1}\|T x\|=\sup _{\|x\|=1}\|T x\|=\sup _{x \neq \theta} \frac{\|T x\|}{\|x\|} \triangleq M T=supx1Tx=supx=1Tx=supx=θxTxM

线性泛函

X X X 到数域 K \mathbb{K} K 的(线性)映射称为 X X X 上的 (线性)泛函, 通常用小写字母表示;类似地, X X X R \mathbb{R} R 的 (线性) 映射称为实 (线性)泛函; X X X C \mathbb{C} C 的映射称为复泛函。

  • 如果 f f f X X X 上的有界线性泛函, 则由上有

∥ f ∥ = sup ⁡ ∥ x ∥ ≤ 1 ∣ f ( x ) ∣ \|f\|=\sup _{\|x\| \leq 1}|f(x)| f=x1supf(x)

但不是每个线性算子都是有界的。例如:在 C [ a , b ] C[a,b] C[a,b]上的微分算子。

有界线性算子空间

X , X 1 X, X_{1} X,X1 为赋范空间, 记 B ( X , X 1 ) \mathscr B \left(X, X_{1}\right) B(X,X1) 为 所有 X X X X 1 X_{1} X1有界线性算子组成的集合, 在 B ( X , X 1 ) \mathscr B\left(X, X_{1}\right) B(X,X1) 中定义加法和数乘如下: S , T ∈ B ( X , X 1 ) S, T \in \mathscr B (X,X_1) S,TB(X,X1)
( S + T ) ( x ) = S ( x ) + T ( x ) , ∀ x ∈ X ( α T ) ( x ) = α T ( x ) , ∀ α ∈ K , x ∈ X \begin{aligned} &(S+T)(x)=S(x)+T(x), \quad \forall x \in X \\ &(\alpha T)(x)=\alpha T(x), \quad \forall \alpha \in \mathbb{K}, x \in X \end{aligned} (S+T)(x)=S(x)+T(x),xX(αT)(x)=αT(x),αK,xX
B ( X , X 1 ) \mathscr B\left(X, X_{1}\right) B(X,X1) 成为一个线性空间, 它在算子范数下构成一个赋范空间。

定理 4.3:设 X X X 赋范, X 1 X_{1} X1 ( B ) (B) (B) 空间, 则 B ( X , X 1 ) B\left(X, X_{1}\right) B(X,X1) 完备。 (反之, 当 X ≠ { θ } X \neq\{\theta\} X={θ} 时, 若 B ( X , X 1 ) B\left(X, X_{1}\right) B(X,X1) 完备, 则 X 1 X_{1} X1 完备。)

注:在算子空间 B ( X , X 1 ) \mathscr B\left(X, X_{1}\right) B(X,X1) 中,算子列 T n → T ( T_{n} \rightarrow T( TnT( 按范 ) ⟺ ) \Longleftrightarrow ) sup ⁡ ∣ ∣ x ∣ ∣ ≤ 1 ∥ T n x − T x ∥ = ∥ T n − T ∥ → 0 ⟺ T n \sup_{||x||\le 1} \left\|T_{n} x-T x\right\|=\left\|T_{n}-T\right\| \rightarrow 0 \Longleftrightarrow T_{n} supx1TnxTx=TnT0Tn 在闭单位 ∥ x ∥ ≤ 1 \|x\| \leq 1 x1
B X = { x ∈ X : ∥ x ∥ ≤ 1 } B_{X}=\{x \in X:\|x\| \leq 1\} BX={xX:x1} 上一致收敛于 T T T

逐点收敛: 设 T n , T ∈ B ( X , X 1 ) T_{n}, T \in B\left(X, X_{1}\right) Tn,TB(X,X1), 如果 ∀ x ∈ X \forall x \in X xX T n x → T_{n} x \rightarrow Tnx T x ( T x( Tx( n → ∞ ) n \rightarrow \infty) n), 则称 { T n } n = 1 ∞ \left\{T_{n}\right\}_{n=1}^{\infty} {Tn}n=1 X X X 上逐点收敛于 T T T 或强收 敛于 T T T 。记为 T n →  强  T T_{n} \stackrel{\text { 强 }}{\rightarrow} T Tn  T

按范收敛 ⟹ \Longrightarrow 强收敛, 反之不成立。

3.2共鸣定理

由共鸣定理可得:若算子 T α T_{\alpha} Tα映射到一完备空间,则由算子族逐点有界可以得到一致有界性质

定理 4.4: (共鸣定理/Banach-Steinhaus) 设 X X X ( B ) (B) (B) 空间, X α X_{\alpha} Xα 赋 范, T α ∈ B ( X , X α ) , ∀ α ∈ A T_{\alpha} \in \mathscr B\left(X, X_{\alpha}\right), \quad \forall \alpha \in A TαB(X,Xα),αA,如果 sup ⁡ α ∈ A ∥ T α x ∥ < ∞ , ∀ x ∈ X , \sup _{\alpha \in A}\left\|T_{\alpha} x\right\|<\infty, \quad \forall x \in X, \quad supαATαx<,xX, sup ⁡ α ∈ A ∥ T α ∥ < ∞ \sup _{\alpha \in A}\left\|T_{\alpha}\right\|<\infty supαATα<

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值