PLS-DA在转录组测序中的作用

偏最小二乘判别分析(PLS-DA)在转录组测序中的作用

PLS-DA(偏最小二乘判别分析)、PCA(主成分分析)和LDA(线性判别分析)在数据分析中各具特色,尤其在转录组测序中发挥着不同的作用。PCA旨在通过最大化数据方差来发现数据的主要变异方向,是一种无监督学习方法,不使用类别标签,主要用于数据探索、可视化和降维。LDA则是一种有监督学习方法,利用类别标签来最大化类别间的分离度,适用于分类问题,尤其在类别数较少且数据满足同质性假设的情况下。PLS-DA同样是有监督学习方法,结合数据矩阵和类别矩阵来建立线性模型,既解释数据变异又最大化类别差异,特别适合高维数据和多类别分类分析。

在转录组测序中,PCA常用于初步探索和可视化,揭示样本间的总体结构和主要变异方向;LDA用于分类分析,帮助识别不同样本类别间的差异;而PLS-DA用于高维数据的分类和模式识别,通过发现与类别相关的重要基因来解释类别差异。

library(ggplot2)
library(mixOmics)
library(plotly)

示例数据

data <- data.frame(
  A_1 = c(318536, 150557, 122505, 148148, 99082, 75485, 82255, 105419, 72649, 56965),
  A_2 = c(313597, 167574, 134634, 24342, 116335, 97305, 97633, 22442, 88218, 74637),
  A_3 = c(323183, 171279, 128499, 91839, 97296, 86613, 73546, 70606, 74153, 47187),
  B_1 = c(328029, 155902, 128421, 152683, 113605, 87315, 79784, 102421, 78869, 61263),
  B_2 = c(325703, 143182, 129297, 169909, 103126, 77979, 77330, 127013, 75375, 50147),
  B_3 = c(331398, 146070, 110833, 265893, 89568, 102110, 95581, 88020, 86477, 49558),
  C_1 = c(437734, 199430, 169011, 199631, 138707, 112732, 111200, 151674, 105523, 77909),
  C_2 = c(411062, 166727, 194230, 175889, 153197, 106374, 119217, 129313, 86007, 86848),
  C_3 = c(364969, 134596, 157595, 241338, 105637, 95466, 72333, 66475, 82056, 47129),
  D_1 = c(422569, 225236, 181031, 53205, 165047, 130130, 126203, 43791, 109560, 95838),
  D_2 = c(374910, 242135, 145604, 42864, 116415, 88220, 88443, 33516, 82931, 46182),
  D_3 = c(414850, 181032, 171796, 12611, 114748, 121445, 109085, 13014, 112121, 87314)
)
row.names(data) <- paste0(rep("gene", 10), 1:10)

转换数据格式

data <- t(data)
data

在这里插入图片描述

创建分组标签

group <- factor(rep(c("A", "B", "C", "D"), each = 3))

执行PLS-DA

plsda_results <- plsda(data, group, ncomp = 3)

提取PLS-DA得分

scores <- as.data.frame(plsda_results$variates$X)
scores$Sample <- rownames(scores)
scores$Group <- group

使用ggplot2包绘制PLS-DA二维图

ggplot(data = scores, aes(x = comp1, y = comp2, label = Sample)) +
  geom_point(aes(color = Group), size = 3) +
  geom_text(aes(), size = 5, vjust = -1) +
  ggtitle("PLS-DA Plot (2D)") +
  xlab("Component 1") +
  ylab("Component 2") +
  theme_minimal()

在这里插入图片描述

使用plotly包绘制PLS-DA三维图

plot_ly(data = scores, x = ~comp1, y = ~comp2, z = ~comp3, color = ~Group, text = ~Sample, 
        type = "scatter3d", mode = "markers+text", marker = list(size = 5)) %>%
  layout(title = "PLS-DA Plot (3D)",
         scene = list(xaxis = list(title = "Component 1"),
                      yaxis = list(title = "Component 2"),
                      zaxis = list(title = "Component 3")))

在这里插入图片描述

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
通过转录评估肿瘤突变负荷的技术路线一般如下: 1. 样本采集和RNA提取:首先需要从肿瘤组织和正常组织采集样本,然后提取RNA。RNA提取需要进行质量检,确保RNA的完整性和纯度。 2. 转录:接下来需要对RNA样本进行,一般使用Illumina HiSeq或NovaSeq平台进行转录需要进行质量控制和去除低质量列。 3. 数据预处理:转录数据需要进行预处理,包括去除低质量列、去除接头列、去除rRNA列、去除重复列等步骤。 4. 转录本定量:使用转录数据进行转录本定量,一般使用RSEM、Kallisto、Salmon等工具进行转录本表达量计算。 5. 突变检和注释:使用转录本定量数据进行突变检和注释,一般使用Mutect、VarScan、GATK等工具进行突变检和注释,同时需要进行过滤和筛选,去除假阳性突变位点。 6. 肿瘤突变负荷计算:使用突变位点和转录本表达量数据计算肿瘤突变负荷,一般计算方法为TMB = 突变数/覆盖的基因组大小,单位为Mb。 7. 数据分析和解释:根据计算得到的肿瘤突变负荷数据,进行数据分析和解释,例如与临床特征和预后相关性的分析。 需要注意的是,转录评估肿瘤突变负荷可能会受到样本来源、平台、数据处理等因素的影响,因此需要进行标准化和质量控制,确保数据的可靠性和准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值