hdoj 1507 二分图的最大匹配

#include<stdio.h>
#include<memory.h>

//定义一个Node的结构体
struct Node
{
    int x, y;//应该是坐标吧。
};

Node link[101][101];//这个表示那个link,如果有link的话,就是link的坐标,如果没有link的话坐标为0

int n, m, dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1};//方向

bool map[101][101], visited[101][101];//地图和标记

bool DFS(Node a)//从字面意思来说是深度优先搜索
{
    Node b;
    for(int i = 0; i < 4; ++i)//四个方向
	{
        b.x = a.x + dir[i][0];
        b.y = a.y + dir[i][1];

		//如果越界,是池塘或者访问过,跳过
        if(b.x <= 0 || b.y <= 0 || b.x > n || b.y > m || map[b.x][b.y] || visited[b.x][b.y])
			continue;

        visited[b.x][b.y] = 1;//标记访问过

        if(link[b.x][b.y].x == 0 || DFS(link[b.x][b.y]))//如果横坐标是0(表明这个点没有被占领)或者这个点还通过增广路交换以后还可以被占领
		{
            link[b.x][b.y] = a;//把link-b标记为a,表示a把这个地方占领啦。
            return 1;
        }
    }
    return 0;
}

int main()
{
    int i, j, k, a, b, match;
    Node s;


    while(scanf("%d %d", &n, &m), n || m)//输入横纵坐标
	{
        scanf("%d", &k);//输入池塘数量

        memset(map, 0, sizeof(map));//初始化


		//对那些有池塘的地方标记为访问过
        for(i = 0; i < k; ++i)
		{
            scanf("%d %d", &a, &b);
            map[a][b] = 1;
        }

        memset(link, 0, sizeof(link));//初始化


        match = 0;
        for(i = 1; i <= n; ++i)
            for(j = 1; j <= m; ++j)
			{
				//如果是池塘或者两个数相加为奇数(这样做其实很有好处,因为毕竟是一个两个格子的骨牌,这样可以减少一杯的计算量。)
                if((i + j) & 1 != 0 || map[i][j]) 
					continue;
                memset(visited, 0, sizeof(visited));
                s.x = i; s.y = j;

                if(DFS(s)) 
					++match;
            }


		//输出
        printf("%d\n", match);
        for(i = 1; i <= n; ++i)
            for(j = 1; j <= m; ++j)
                if(link[i][j].x != 0)
                    printf("(%d,%d)--(%d,%d)\n", i, j, link[i][j].x, link[i][j].y);
        printf("\n");
    }
    return 0;
}

/*

1 整体想法应该是这样的:我先找一个不是池塘的点,让后把他放入,让后进行上下左右的扩展,
扩展到一个点,如果这个点没有被占领,或者是通过增广路的扩展以后可以放进去,那么匹配数
加一。

*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值