《随机过程应用》 随机变量

本文深入探讨了随机变量的概念,包括离散和连续随机变量的定义、概率分布,如伯努利、二项、几何、超几何、泊松分布等。还介绍了期望、方差、独立随机变量的性质以及联合分布和协方差。通过矩母函数,我们可以计算高阶矩并推导出统计特性。最后,讨论了极限定理和马尔可夫不等式在概率论中的重要应用。
摘要由CSDN通过智能技术生成

随机变量

随机变量:定义在样本空间的实值函数。如两次骰子的和。两次硬币出现正面总次数。
可以给随机变量的可能值指定概率。
示性随机变量:如果随机变量I的取值取决于事件E是否发生,则称I为示性随机变量。如I表示:在正面骰子大于3时为1否则为0.

离散随机变量

离散随机变量X的累计分布函数F(b) = P{X<=b}
概率密度函数p(a) = P{X=a}

常见随机变量类型:

伯努利:成功或失败 (p ) EX=p
二项:多次伯努利 (n,p) EX=np
几何:几次实验才出现成功 EX=1/p
超几何:不放回模球
泊松:可以用来近似二项分布(lambda) Ex = lamda
期望:X可能取值的加权和。概率作为权。

连续随机变量

累积分布函数F XX
概率密度函数f XX

常见均匀变量:

均匀:(a,b) EX=(a+b)/2
指数: EX=1/lambda
伽马:(lamda,gama)
正态:
期望:积分 xf(x) dx

随机变量的函数

随机变量的函数:Y=g(X),给定X,有一个Y对应。
Y的期望: E ( g ( x ) ) = ∑ g ( x ) p ( x ) E(g(x)) = ∑g(x)p(x) E(g(x))=g(x)p(x)
E ( g ( X ) ) = ∫ g ( x ) f ( x ) d x E(g(X)) = \int g(x)f(x) dx E(g(X))=g(x)f(x)dx
方差:
v a r ( X ) = E X 2 + ( E X ) 2 var(X) = EX^2 + (EX)^2 var(X)=EX2+(EX)2

联合分布的随机变量:

联合累积概率分布函数:
F ( a , b ) = P { X < = a , Y < = b } F(a,b) = P\{X<=a, Y<=b\} F(a,b)=P{X<=a,Y<=b}
a, b, F(a,b) , 都是实数。
离散:
联合概率质量函数:p(x,y) = P{X=x, Y=Y}
连续:
概率密度函数:
F ( a , b ) = ∫ − ∞ a ∫ − ∞ b f ( x , y ) d x F(a,b) = \int^ a _ {-\infty} \int ^b _ {-\infty} f(x,y)dx F(a,b)=abf(x,y)dx

期望:
注意下面的公式不要求xy独立,任何情况下都成立
E [ g ( X , Y ) ] = { ∑ ∑ g ( x , y ) p ( x , y ) , 离 散 ∫ − ∞ a ∫ − ∞ b g ( x , y ) f ( x , y ) d x d y , 连 续 E[g(X,Y)]=\left\{ \begin{aligned} \sum\sum g(x,y)p(x,y) & ,离散\\ \int^ a _ {-\infty} \int ^b _ {-\infty} g(x,y)f(x,y)dxdy &,连续 \end{aligned} \right. E[g(X,Y)]=g(x,y)p(x,y)abg(x,y)f(x,y)dxdy,,
例如 E(X+Y)=EX+EY (任何情况下都成立)

独立随机变量

独立:如果 P{X<=a,Y<=b}=P{X<=a}P{Y<=b},则XY独立,或者说Fa和Fb独立。
特别的:
离散:
p ( x , y ) = p X ( x ) p Y ( y ) p(x,y) = p_{_X} (x)p_{_Y}(y) p(x,y)=pX(x)pY(y)
连续:
f ( x , y ) = f X ( x ) f Y ( y ) (1) f(x,y) = f_{_X} (x)f_{_Y}(y) \tag{1} f(x,y)=fX(x)fY(y)(1)

特点:
如果XY独立。则:
E [ g ( X ) h ( Y ) ] = E [ g ( X ) ] E [ h ( Y ) ] E[g(X)h(Y)] =E[g(X)]E[h(Y)] E[g(X)h(Y)]=E[g(X)]E[h(Y)]

协方差

C o n v ( X , Y ) = E [ X Y ] − E [ X ] E [ Y ] Conv(X,Y) = E[XY]-E[X]E[Y] Conv(X,Y)=E[XY]E[X]E[Y]
如果XY独立,则协方差为0,如果X增加,使得Y更可能增加,则协方差为正。

协方差的性质:
Conv(X,X) = Var(X)
Conv(X,Y)=Conv(Y,X)
Conv(cX,Y)=cConv(X,Y)
Conv(X,Y+Z)=Conv(X,Y)+Conv(X,Z)
其中:
V a r ( X ) = E [ X 2 ] − ( E X ) 2 Var(X) = E[X^2]-(EX)^2 Var(X)=E[X2](EX)2
称为方差,总体方差。

推论:
C o n v ( ∑ X i , ∑ Y i ) = ∑ ∑ C o n v ( X i , Y i ) Conv(\sum X_i, \sum Y_i) = \sum \sum Conv( X_i, Y_i) Conv(Xi,Yi)=Conv(Xi,Yi)
V a r ( ∑ X i ) = ∑ V a r ( X i ) + ∑ i = 1 ∑ j ≠ i C o n v ( X i , Y j ) Var(\sum X_i) = \sum Var(X_i)+ \sum_{i=1}\sum_{j\ne i}{Conv(Xi,Yj)} Var(Xi)=Var(Xi)+i=1j=iConv(Xi,Yj)

V a r ( ∑ X i ) = ∑ V a r ( X i ) , i f   X i 独 立 同 分 布 Var(\sum X_i) = \sum Var(X_i), if ~Xi独立同分布 Var(Xi)=Var(Xi),if Xi

p41-42

当XY独立,可以计算出X+Y的分布。
F X + Y ( a ) = P { X + Y ≤ a } = ∬ x + y ≤ a f ( x , y ) d x d y   ( 由 公 式 ( 1 ) ) = ∬ x + y ≤ a f ( x ) g ( y ) d x d y = ∫ − ∞ ∞ F X ( a − y ) g ( y ) d y F_{X+Y}(a)=P\{X+Y \le a \}\\ =\iint_{x+y \le a} f(x,y)dxdy ~(由公式(1))\\ =\iint_{x+y \le a} f(x)g(y)dxdy \\ =\int_{-\infty}^ \infty F_X(a-y)g(y)dy FX+Y(a)=P{X+Ya}=x+yaf(x,y)dxdy (1)=x+yaf(x)g(y)dxdy=FX(ay)g(y)dy
微分得:
f X + Y ( a ) = ∫ − ∞ ∞ f ( a − y ) g ( y ) d y f_{X+Y}(a)=\int_{-\infty}^ \infty f(a-y)g(y)dy fX+Y(a)=f(ay)g(y)dy

矩母函数

ϕ ( t ) = E [ e e X ] \phi(t) = E[e^{eX}] ϕ(t)=E[eeX]
利用矩母函数可以推出:

ϕ ( n ) ( 0 ) = E [ X n ] \phi ^{(n)}(0) = E[X^n] ϕ(n)(0)=E[Xn]
由此可以求n阶矩,并求出均值方差等。
矩母函数和X得分布函数一一对应

极限定理

马尔可夫不等式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值