《随机过程应用》 随机变量

随机变量

随机变量:定义在样本空间的实值函数。如两次骰子的和。两次硬币出现正面总次数。
可以给随机变量的可能值指定概率。
示性随机变量:如果随机变量I的取值取决于事件E是否发生,则称I为示性随机变量。如I表示:在正面骰子大于3时为1否则为0.

离散随机变量

离散随机变量X的累计分布函数F(b) = P{X<=b}
概率密度函数p(a) = P{X=a}

常见随机变量类型:

伯努利:成功或失败 (p ) EX=p
二项:多次伯努利 (n,p) EX=np
几何:几次实验才出现成功 EX=1/p
超几何:不放回模球
泊松:可以用来近似二项分布(lambda) Ex = lamda
期望:X可能取值的加权和。概率作为权。

连续随机变量

累积分布函数F XX
概率密度函数f XX

常见均匀变量:

均匀:(a,b) EX=(a+b)/2
指数: EX=1/lambda
伽马:(lamda,gama)
正态:
期望:积分 xf(x) dx

随机变量的函数

随机变量的函数:Y=g(X),给定X,有一个Y对应。
Y的期望: E ( g ( x ) ) = ∑ g ( x ) p ( x ) E(g(x)) = ∑g(x)p(x) E(g(x))=g(x)p(x)
E ( g ( X ) ) = ∫ g ( x ) f ( x ) d x E(g(X)) = \int g(x)f(x) dx E(g(X))=g(x)f(x)dx
方差:
v a r ( X ) = E X 2 + ( E X ) 2 var(X) = EX^2 + (EX)^2 var(X)=EX2+(EX)2

联合分布的随机变量:

联合累积概率分布函数:
F ( a , b ) = P { X < = a , Y < = b } F(a,b) = P\{X<=a, Y<=b\} F(a,b)=P{X<=a,Y<=b}
a, b, F(a,b) , 都是实数。
离散:
联合概率质量函数:p(x,y) = P{X=x, Y=Y}
连续:
概率密度函数:
F ( a , b ) = ∫ − ∞ a ∫ − ∞ b f ( x , y ) d x F(a,b) = \int^ a _ {-\infty} \int ^b _ {-\infty} f(x,y)dx F(a,b)=abf(x,y)dx

期望:
注意下面的公式不要求xy独立,任何情况下都成立
E [ g ( X , Y ) ] = { ∑ ∑ g ( x , y ) p ( x , y ) , 离 散 ∫ − ∞ a ∫ − ∞ b g ( x , y ) f ( x , y ) d x d y , 连 续 E[g(X,Y)]=\left\{ \begin{aligned} \sum\sum g(x,y)p(x,y) & ,离散\\ \int^ a _ {-\infty} \int ^b _ {-\infty} g(x,y)f(x,y)dxdy &,连续 \end{aligned} \right. E[g(X,Y)]=g(x,y)p(x,y)abg(x,y)f(x,y)dxdy,,
例如 E(X+Y)=EX+EY (任何情况下都成立)

独立随机变量

独立:如果 P{X<=a,Y<=b}=P{X<=a}P{Y<=b},则XY独立,或者说Fa和Fb独立。
特别的:
离散:
p ( x , y ) = p X ( x ) p Y ( y ) p(x,y) = p_{_X} (x)p_{_Y}(y) p(x,y)=pX(x)pY(y)
连续:
f ( x , y ) = f X ( x ) f Y ( y ) (1) f(x,y) = f_{_X} (x)f_{_Y}(y) \tag{1} f(x,y)=fX(x)fY(y)(1)

特点:
如果XY独立。则:
E [ g ( X ) h ( Y ) ] = E [ g ( X ) ] E [ h ( Y ) ] E[g(X)h(Y)] =E[g(X)]E[h(Y)] E[g(X)h(Y)]=E[g(X)]E[h(Y)]

协方差

C o n v ( X , Y ) = E [ X Y ] − E [ X ] E [ Y ] Conv(X,Y) = E[XY]-E[X]E[Y] Conv(X,Y)=E[XY]E[X]E[Y]
如果XY独立,则协方差为0,如果X增加,使得Y更可能增加,则协方差为正。

协方差的性质:
Conv(X,X) = Var(X)
Conv(X,Y)=Conv(Y,X)
Conv(cX,Y)=cConv(X,Y)
Conv(X,Y+Z)=Conv(X,Y)+Conv(X,Z)
其中:
V a r ( X ) = E [ X 2 ] − ( E X ) 2 Var(X) = E[X^2]-(EX)^2 Var(X)=E[X2](EX)2
称为方差,总体方差。

推论:
C o n v ( ∑ X i , ∑ Y i ) = ∑ ∑ C o n v ( X i , Y i ) Conv(\sum X_i, \sum Y_i) = \sum \sum Conv( X_i, Y_i) Conv(Xi,Yi)=Conv(Xi,Yi)
V a r ( ∑ X i ) = ∑ V a r ( X i ) + ∑ i = 1 ∑ j ≠ i C o n v ( X i , Y j ) Var(\sum X_i) = \sum Var(X_i)+ \sum_{i=1}\sum_{j\ne i}{Conv(Xi,Yj)} Var(Xi)=Var(Xi)+i=1j=iConv(Xi,Yj)

V a r ( ∑ X i ) = ∑ V a r ( X i ) , i f   X i 独 立 同 分 布 Var(\sum X_i) = \sum Var(X_i), if ~Xi独立同分布 Var(Xi)=Var(Xi),if Xi

p41-42

当XY独立,可以计算出X+Y的分布。
F X + Y ( a ) = P { X + Y ≤ a } = ∬ x + y ≤ a f ( x , y ) d x d y   ( 由 公 式 ( 1 ) ) = ∬ x + y ≤ a f ( x ) g ( y ) d x d y = ∫ − ∞ ∞ F X ( a − y ) g ( y ) d y F_{X+Y}(a)=P\{X+Y \le a \}\\ =\iint_{x+y \le a} f(x,y)dxdy ~(由公式(1))\\ =\iint_{x+y \le a} f(x)g(y)dxdy \\ =\int_{-\infty}^ \infty F_X(a-y)g(y)dy FX+Y(a)=P{X+Ya}=x+yaf(x,y)dxdy (1)=x+yaf(x)g(y)dxdy=FX(ay)g(y)dy
微分得:
f X + Y ( a ) = ∫ − ∞ ∞ f ( a − y ) g ( y ) d y f_{X+Y}(a)=\int_{-\infty}^ \infty f(a-y)g(y)dy fX+Y(a)=f(ay)g(y)dy

矩母函数

ϕ ( t ) = E [ e e X ] \phi(t) = E[e^{eX}] ϕ(t)=E[eeX]
利用矩母函数可以推出:

ϕ ( n ) ( 0 ) = E [ X n ] \phi ^{(n)}(0) = E[X^n] ϕ(n)(0)=E[Xn]
由此可以求n阶矩,并求出均值方差等。
矩母函数和X得分布函数一一对应

极限定理

马尔可夫不等式

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 随机变量随机过程概率论中的重要概念。概率随机变量随机过程pdf下载是指可供学习者下载的有关这方面知识的教材或资料。概率随机变量是指将样本空间中的一些值映射到实数集上的函数,通常用于描述某个事件发生的可能性。随机过程是一种随时间变化的随机现象,它可以用一系列随机变量来描述。通常我们用概率分布函数或密度函数来描述随机变量的概率性质,用各种统计量来描述其数值特征。而对于随机过程,我们则需要用概率密度函数或谱密度函数、相关函数等方法来描述其时间和频率特征。 概率随机变量随机过程应用非常广泛,它们可以用于建模、预测、控制等各种领域。例如,在金融领域中,我们可以用随机过程来描述股票价格的变化,用随机变量来描述某种市场指数的波动情况;在工程领域中,我们可以用随机过程来描述信号、噪声等随时间变化的随机信号,用随机变量来描述某种特定材料的某些物理特性的概率分布。 概率随机变量随机过程的学习需要一定的数学基础,特别是概率论、数理统计等相关知识。但是,对于工程技术人员和一些实际应用领域的从业者来说,了解概率随机变量随机过程的基本原理和应用方法非常有必要。因此,对于那些想要深入了解这方面知识的学习者来说,概率随机变量随机过程pdf下载可能是一种不错的选择。 ### 回答2: 概率随机变量随机过程是一门重要的随机过程课程,主要研究系列随机变量随机过程以及它们的性质和应用。在相关行业和领域,如通信、控制、金融、统计学和物理学等方面,这门课程都有着广泛的实际应用。 这本书主要介绍了概率随机变量随机过程的定义、性质、分类和重要理论和方法。其中,概率随机变量的研究主要涉及离散型随机变量、连续型随机变量、多维随机变量和矢量随机变量。在随机过程方面,涵盖了马尔可夫过程、泊松过程、扩散过程、随机游走、马尔可夫链等知识点,在实际应用中起到了重要的作用。 此外,书中还介绍了概率随机变量随机过程的特殊应用,如随机信号分析、时间序列分析、蒙特卡洛方法等等。通过本书的学习,读者将能够掌握随机变量随机过程的基本概念、性质和方法,理解随机现象的内在特性和运行规律,从而能够更好地应用于实际工程和科学领域。 该书的PDF版本免费提供下载,为学习该课程的学生和从事相关领域研究的专业人士提供了非常宝贵的资源和资料。希望读者在学习和研究过程中能够加强理论与实践的结合,积极探索随机现象的规律和应用,为推动相关领域的发展和进步做出贡献。 ### 回答3: 概率随机变量随机过程概率论中重要的概念,它们在统计学、工程学、物理学、经济学等领域都有广泛的应用。概率随机变量是一种随机现象,它可以用数值来表示,例如掷骰子的点数、抛硬币的正反面等等。概率随机变量的概率分布可以用概率密度函数或概率分布函数来描述,这些函数可以用于计算随机变量取某一值的概率。 随机过程是一种随机现象,它的值是一个随时间变化的随机变量。例如,股票价格随着时间的推移而变化,这就是一个随机过程随机过程可以用概率密度函数或概率分布函数来描述,这些函数可以用于计算随机过程在某一时刻的取值的概率。 概率随机变量随机过程pdf是概率论中的一份资料,它包含了概率随机变量随机过程的各种特性、定义、性质和应用。下载这份资料可以帮助我们更好地理解和应用概率随机变量随机过程。在应用中,我们可以利用概率论的知识来分析随机现象的规律,进行预测和决策。因此,对概率随机变量随机过程的研究和应用具有重要的意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值