随机过程(二)——随机变量

1. 随机变量

随机变量: 定义在样本空间上的实值函数,称为随机变量。例如掷骰子时,我们关心的是两颗骰子的点数和,而不是两次骰子具体的点数,我们所关注的量,即点数和,就是随机变量。

示性随机变量: I = { 1 电 池 的 寿 命 是 两 年 或 者 更 长 0 其 他 情 形 I = \begin{cases} 1 & 电池的寿命是两年或者更长 \\ 0 & 其他情形 \end{cases} I={10寿
以E记电池的寿命是两年或者更长,那么随机变量 I I I称为事件E的示性随机变量 I I I的取值依赖于E是否发生

概率质量函数: 描述离散型随机变量的输出值

概率密度函数: 描述连续型随机变量的输出值

累积分布函数F:
∀ a ∈ R , F ( a ) = P { X ≤ a } = { ∑ ∀ x i ≤ a p ( x i ) X 为 离 散 随 机 变 量 ∫ − ∞ a f ( x ) d x X 为 连 续 随 机 变 量 \forall a \in R,F(a) = P\{X \leq a \} = \begin{cases} \sum \limits_{\forall x_i \leq a} p(x_i) & X为离散随机变量 \\ \int \limits_{- \infty}^a f(x) dx & X为连续随机变量 \end{cases} aRF(a)=P{Xa}=xiap(xi)af(x)dxXX

F的性质:
  1. F(b)是b的非减函数
  2.  lim ⁡ b → ∞ F ( b ) = F ( ∞ ) = 1 \lim_{b \to \infty}F(b) = F(\infty) = 1 limbF(b)=F()=1
  3.  lim ⁡ b → − ∞ F ( b ) = F ( − ∞ ) = 0 \lim_{b \to -\infty} F(b) = F(-\infty) = 0 limbF(b)=F()=0

∀ a < b , 有 P { a < X ≤ b } = F ( b ) − F ( a ) \forall a < b,有P\{a < X \leq b\} = F(b) - F(a) a<bP{a<Xb}=F(b)F(a)

P { X < b } = lim ⁡ h → 0 + P { X ≤ b − h } = lim ⁡ h → 0 + F ( b − h ) P\{X < b\} = \lim \limits_{h \to 0^+} P\{X \leq b - h\} = \lim \limits_{h \to 0^+} F(b - h) P{X<b}=h0+limP{Xbh}=h0+limF(bh)

P { X < b } P\{X < b\} P{X<b}不一定等于F(b),因为F(b)也包括X=b的概率

变量期望E(X):
E ( x ) = { ∑ k ∞ x p ( x ) x 为 离 散 随 机 变 量 ∫ − ∞ ∞ x f ( x ) d x x 为 连 续 随 机 变 量 E(x) = \begin{cases} \sum \limits^{\infty}_{k}x p(x) & x为离散随机变量 \\ \int \limits^{\infty}_{- \infty} xf(x) dx & x为连续随机变量 \end{cases} E(x)=kxp(x)xf(x)dxxx

函数期望E[g(X)]:
E [ g ( x ) ] = { ∑ k ∞ g ( x ) p ( x ) x 为 离 散 随 机 变 量 ∫ − ∞ ∞ g ( x ) f ( x ) d x x 为 连 续 随 机 变 量 E[g(x)] = \begin{cases} \sum \limits^{\infty}_{k} g(x) p(x) & x为离散随机变量 \\ \int \limits^{\infty}_{- \infty} g(x) f(x) dx & x为连续随机变量 \end{cases} E[g(x)]=kg(x)p(x)g(x)f(x)dxxx

若a和b都是常数,则 E [ a X + b ] = a E [ X ] + b E[aX + b] = aE[X] + b E[aX+b]=aE[X]+b
随机变量X的期望E(X)称为均值或X的一阶矩 E ( X n ) ,   n ≥ 1 E(X^n),\ n \geq 1 E(Xn), n1称为X的n阶矩

E [ X n ] = { ∑ x : p ( x ) > 0 x n p ( x ) X 为 离 散 ∫ − ∞ ∞ x n f ( x ) d x X 为 连 续 E[X^n] = \begin{cases} \sum \limits_{x:p(x) > 0} x^n p(x) & X为离散 \\ \\ \int \limits^\infty_{- \infty} x^n f(x) dx & X 为连续 \end{cases} E[Xn]=x:p(x)>0xnp(x)xnf(x)dxXX

方差D(X):
D ( X ) = E [ ( X − E [ X ] ) 2 ] = E ( X 2 ) − [ E ( X ) ] 2 D(X) = E[(X - E[X])^2] = E(X^2) - [E(X)]^2 D(X)=E[(XE[X])2]=E(X2)[E(X)]2

例如:
X代表掷一颗均匀的骰子的结果,求Var(X)
解:
E ( X ) = ∑ i = 1 6 i × 1 6 = 7 2 E ( X 2 ) = ∑ i = 1 6 i 2 × 1 6 = 91 6 V a r ( X ) = 91 6 − ( 7 2 ) 2 = 35 12 E(X) = \sum \limits^6_{i = 1} i \times \frac{1}{6} = \frac{7}{2} \\ E(X^2) = \sum \limits^6_{i = 1} i^2 \times \frac{1}{6} = \frac{91}{6} \\ Var(X) = \frac{91}{6} - (\frac{7}{2})^ 2 = \frac{35}{12} E(X)=i=16i×61=27E(X2)=i=16i2×61=691Var(X)=691(27)2=1235

易混淆概念:
1. 概率质量函数针对离散随机变量
2. 概率密度函数针对连续随机变量
3. 累积分布函数也叫分布函数,是概率密度函数的积分

2. 离散随机变量、期望、方差

2.1 离散随机变量

一个最多取可数个可能值的随机变量,称为离散随机变量。对于一个离散随机变量X,用 p ( a ) = P { X = a } p(a) = P\{X = a\} p(a)=P{X=a}定义概率质量函数p(a)

X ∈ { x 1 ,   x 2 ,   ⋯   } ⇒ { p ( x i ) > 0 i = 1 ,   2 ,   ⋯ p ( x ) = 0 所 有 其 它 x 值 X \in \{x_1,\ x_2,\ \cdots \} \Rightarrow \begin{cases} p(x_i) > 0 & i = 1,\ 2,\ \cdots \\ p(x) = 0 & 所有其它x值 \end{cases} X{x1, x2, }{p(xi)>0p(x)=0i=1, 2, x

X ∈ { x 1 ,   x 2 ,   ⋯   } ⇒ ∑ i = 1 ∞ p ( x i ) = 1 X \in \{x_1,\ x_2,\ \cdots \} \Rightarrow \sum \limits^{\infty}_{i = 1} p(x_i) = 1 X{x1, x2, }i=1p(xi)=1,故累积分布函数F可以用p(a)表示为 F ( a ) = ∑ ∀ x i ≤ a p ( x i ) F(a) = \sum \limits_{\forall x_i \leq a} p(x_i) F(a)=xiap(xi)

例如:
假定X具有由 p ( 1 ) = 1 2 , p ( 2 ) = 1 3 , p ( 3 ) = 1 6 \\p(1) = \frac{1}{2},p(2) = \frac{1}{3},p(3) = \frac{1}{6}\newline p(1)=21p(2)=31p(3)=61 给出的概率质量函数,则X的累积分布函数为
F ( a ) = { 0 a < 1 1 2 1 ≤ a < 2 1 3 2 ≤ a < 3 1 6 3 ≤ a F(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{2} & 1 \leq a < 2 \\ \frac{1}{3} & 2 \leq a < 3 \\ \frac{1}{6} & 3 \leq a \end{cases} F(a)=0213161a<11a<22a<33a

2.2 伯努利随机变量:

试验的结果只有成功与失败,在成功时令X=1,在失败时令X=0,则X的概率质量函数
p ( 0 ) = P { X = 0 } = 1 − p p ( 1 ) = P { X = 1 } = p p(0) = P\{X = 0\} = 1 - p \\ p(1) = P\{X = 1\} = p\newline p(0)=P{X=0}=1pp(1)=P{X=1}=p随机变量X称为伯努利随机变量

期望:
E [ X ] = 0 × ( 1 − p ) + 1 × p = p E[X] = 0 \times (1 - p) + 1 \times p = p E[X]=0×(1p)+1×p=p

方差:
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = p − p 2 = p ( 1 − p ) D(X) = E(X^2) - [E(X)]^2 = p - p^2 = p(1-p) D(X)=E(X2)[E(X)]2=pp2=p(1p)

2.3 二项随机变量

假定做了n次独立试验,其中每次结果为成功的概率为p,失败的概率为 1 − p 1 - p 1p,如果以X代表出现在n次实验中成功的次数,那么X称为具有参数 ( n , p ) (n, p) (n,p)二项随机变量。X的概率质量函数为
p ( i ) = ( n i ) p i ( 1 − p ) n − i , i = 0 ,   1 ,   ⋯   ,   n ( n i ) = C n i = n ! ( n − i ) ! i ! p(i) = \dbinom{n}{i} p^i (1 - p)^{n - i},\quad i = 0,\ 1,\ \cdots,\ n \\ \dbinom{n}{i} = C^{i}_{n} = \frac{n!}{(n - i)! i!} p(i)=(in)pi(1p)ni,i=0, 1, , n(in)=Cni=(ni)!i!n!

期望:
E ( X ) = n p E(X) = np E(X)=np
求解过程:
E [ X ] = ∑ i = 0 n i p ( i ) = ∑ i = 0 n i ( n i ) p i ( 1 − p ) n − i = ∑ i = 1 n i n ! ( n − i ) ! i ! p i ( 1 − p ) n − i = ∑ i = 1 n n ! ( n − i ) ! ( i − 1 ) ! p i ( 1 − p ) n − i = n p ∑ i = 1 n ( n − 1 ) ! ( n − i ) ! ( i − 1 ) ! p i − 1 ( 1 − p ) n − i = n p ∑ k = 0 n − 1 ( n − 1 k ) p k ( 1 − p ) n − 1 − k = n p [ p + ( 1 − p ) ] n − 1 = n p \begin{aligned} E[X] & = \sum^n_{i = 0} i p(i) \\ & = \sum^n_{i = 0} i \dbinom{n}{i} p^i (1 -p)^{n - i} \\ & = \sum^n_{i = 1} \frac{i n!}{(n - i)! i!} p^i (1 - p)^{n - i} \\ & = \sum^n_{i = 1} \frac{n!}{(n - i)! (i - 1)!} p^i (1 - p)^{n - i} \\ & = np \sum^n_{i = 1} \frac{(n - 1)!}{(n - i)! (i - 1)!} p^{i - 1}(1 - p)^{n - i} \\ & = np \sum^{n - 1}_{k = 0} \dbinom{n - 1}{k} p^k (1 - p)^{n - 1 - k} \\ & = np[p + (1 - p)]^{n - 1} \\ & = np \end{aligned} E[X]=i=0nip(i)=i=0ni(in)pi(1p)ni=i=1n(ni)!i!in!pi(1p)ni=i=1n(ni)!(i1)!n!pi(1p)ni=npi=1n(ni)!(i1)!(n1)!pi1(1p)ni=npk=0n1(kn1)pk(1p)n1k=np[p+(1p)]n1=np

方差:
D ( X ) = n p ( 1 − p ) D(X) = np(1 - p) D(X)=np(1p)
求解过程:
E [ X 2 ] = ∑ i = 0 n i 2 p ( i ) = ∑ i = 0 n i 2 ( n i ) p i ( 1 − p ) n − i = n p ∑ i = 1 n i ( n − 1 ) ! ( n − i ) ! ( i − 1 ) ! p i − 1 ( 1 − p ) n − i = n p ∑ k = 0 n − 1 ( k + 1 ) ( n − 1 ) ! ( n − 1 − k ) ! k ! p k ( 1 − p ) n − 1 − k = n p [ ∑ k = 0 n − 1 ( n − 1 k ) p k ( 1 − p ) n − 1 − k + ∑ k = 0 n − 1 k ( n − 1 ) ! ( n − 1 − k ) ! k ! p k ( 1 − p ) n − 1 − k ] = n p [ 1 + ( n − 1 ) p ] D ( X ) = E ( X 2 ) − E 2 ( X ) = n p [ 1 + ( n − 1 ) p ] − ( n p ) 2 = n p ( 1 − p ) \begin{aligned} E[X^2] & = \sum^n_{i = 0} i^2 p(i) \\ & = \sum^n_{i = 0} i^2 \dbinom{n}{i} p^i (1 -p)^{n - i} \\ & = np \sum^n_{i = 1} \frac{i (n - 1)!}{(n - i)! (i - 1)!} p^{i - 1}(1 - p)^{n - i} \\ & = np \sum^{n - 1}_{k = 0} \frac{(k + 1) (n - 1)!}{(n - 1 - k)! k!} p^k (1 - p)^{n - 1 - k} \\ & = np \left[ \sum^{n - 1}_{k = 0} \dbinom{n - 1}{k} p^k (1 - p)^{n - 1 - k} + \sum^{n - 1}_{k = 0} \frac{k (n - 1)!}{(n - 1 - k)! k!} p^k (1 - p)^{n - 1 - k} \right] \\ & = np[1 + (n - 1)p] \\ \end{aligned} \\ D(X) = E(X^2) - E^ 2 (X) = np[1 + (n - 1)p] - (np)^2 = np(1 - p) E[X2]=i=0ni2p(i)=i=0ni2(in)pi(1p)ni=npi=1n(ni)!(i1)!i(n1)!pi1(1p)ni=npk=0n1(n1k)!k!(k+1)(n1)!pk(1p)n1k=np[k=0n1(kn1)pk(1p)n1k+k=0n1(n1k)!k!k(n1)!pk(1p)n1k]=np[1+(n1)p]D(X)=E(X2)E2(X)=np[1+(n1)p](np)2=np(1p)

2.4 几何随机变量

假定进行独立试验直到出现一个结果为成功,其中每一个试验成功的概率都是p,如果以X记直到出现首次成功所需要做的试验次数,则称X为具有参数p的几何随机变量。概率质量函数为 p ( n ) = P { X = n } = ( 1 − p ) n − 1 p , n = 1 ,   2 ,   ⋯ \\p(n) = P\{X = n\} = (1 - p)^{n - 1}p, \quad n =1,\ 2,\ \cdots p(n)=P{X=n}=(1p)n1p,n=1, 2, 

期望:
E ( X ) = 1 p E(X) = \frac{1}{p} E(X)=p1
求解过程:
E [ X ] = ∑ n = 1 ∞ n p ( 1 − p ) n − 1 = p ∑ n = 1 ∞ n q n − 1 ( q = 1 − p ) = p ∑ n = 1 ∞ d q n d q = p d ( ∑ n = 1 ∞ q n ) d q = p d ( q 1 − q ) d q = p ( 1 − q ) 2 = 1 p \begin{aligned} E[X] & = \sum^{\infty}_{n = 1}n p (1-p)^{n - 1} \\ & = p\sum^{\infty}_{n = 1} nq^{n - 1} (q = 1 - p) \\ & = p \sum^{\infty}_{n = 1} \frac{d q^n}{dq} \\ & = p \frac{d (\sum^{\infty}_{n = 1}q^n)}{dq} \\ & = p \frac{d(\frac{q}{1- q})}{dq} \\ & = \frac{p}{(1 - q)^2} \\ & = \frac{1}{p} \end{aligned} E[X]=n=1np(1p)n1=pn=1nqn1(q=1p)=pn=1dqdqn=pdqd(n=1qn)=pdqd(1qq)=(1q)2p=p1

方差:
D ( X ) = 1 − p p 2 D(X) = \frac{1 - p}{p^2} D(X)=p21p
求解过程:
E ( X 2 ) = ∑ n = 1 ∞ n 2 p ( 1 − p ) n − 1 = p ∑ n = 1 ∞ n 2 q n − 1 ( q = 1 − p ) = p ( ∑ n = 1 ∞ n q n ) q ′ = p ( q ∑ n = 1 ∞ n q n − 1 ) q ′ = p ( q ( 1 − q ) 2 ) q ′ = 2 − p p 2 D ( X ) = E ( X 2 ) − E 2 ( X ) = 2 − p p 2 − 1 p 2 = 1 − p p 2 \begin{aligned} E(X^2) & = \sum^{\infty}_{n = 1} n^2 p (1-p)^{n - 1} \\ & = p\sum^{\infty}_{n = 1} n^2 q^{n - 1} (q = 1 - p) \\ & = p \left(\sum^{\infty}_{n = 1} n q^n \right)^{'}_q \\ & = p \left(q \sum^{\infty}_{n = 1} n q^{n - 1} \right)^{'}_q \\ & = p \left( \frac{q}{(1 - q)^2} \right)^{'}_q \\ & = \frac{2 - p}{p^2} \end{aligned} \\ D(X) = E(X^2) - E^2(X) = \frac{2 - p}{p^2} - \frac{1}{p^2} = \frac{1 - p}{p^2} E(X2)=n=1n2p(1p)n1=pn=1n2qn1(q=1p)=p(n=1nqn)q=p(qn=1nqn1)q=p((1q)2q)q=p22pD(X)=E(X2)E2(X)=p22pp21=p21p

2.5 超几何随机变量

超几何分布: 从有限N个物件(包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)
概率密度函数:
p ( k ) = P { X = k } = C M k C N − M n − k C N n p(k) = P\{X = k\} = \frac{C^k_M C^{n - k}_{N - M}}{C^n_N} p(k)=P{X=k}=CNnCMkCNMnk

期望:
E ( X ) = n M N E(X) = \frac{nM}{N} E(X)=NnM
求解过程:

方差:
D ( X ) = n M N ( 1 − M N ) ( 1 − n − 1 N − 1 ) D(X) = n \frac{M}{N} (1 - \frac{M}{N})(1 - \frac{n - 1}{N - 1}) D(X)=nNM(1NM)(1N1n1)
求解过程:

2.6 泊松随机变量

泊松随机变量:
∀ X ∈ N , ∃ λ > 0 , p ( i ) = P { X = i } = e − λ λ i i ! i = 0 ,   1 ,   ⋯ \forall X \in N, \quad \exist \lambda > 0, \quad p(i) = P\{X = i\} = e^{-\lambda} \frac{\lambda^i}{i!} \quad i = 0,\ 1,\ \cdots XN,λ>0,p(i)=P{X=i}=eλi!λii=0, 1, 

期望:
E ( X ) = λ E(X) = \lambda E(X)=λ
求解过程:
E [ X ] = ∑ i = 0 ∞ i e − λ λ i i ! = ∑ i = 1 ∞ e − λ λ i ( i − 1 ) ! = λ e − λ ∑ k = 0 ∞ λ k k ! = λ e − λ e λ = λ \begin{aligned} E[X] & = \sum^{\infty}_{i = 0} \frac{i e^{- \lambda} \lambda^i}{i !} \\ & = \sum^{\infty}_{i = 1} \frac{e^{- \lambda} \lambda^i}{(i - 1)!} \\ & = \lambda e^{- \lambda} \sum^{\infty}_{k = 0} \frac{\lambda^k}{k!} \\ & = \lambda e^{- \lambda} e^{\lambda} = \lambda \end{aligned} E[X]=i=0i!ieλλi=i=1(i1)!eλλi=λeλk=0k!λk=λeλeλ=λ

方差:
D ( X ) = λ D(X) = \lambda D(X)=λ
求解过程:
E ( X 2 ) = ∑ i = 0 ∞ i 2 e − λ λ i i ! = λ ∑ i = 1 ∞ i e − λ λ i − 1 ( i − 1 ) ! = λ ( e − λ ∑ k = 0 ∞ λ k k ! + λ ∫ k = 1 ∞ e − λ λ k − 1 ( k − 1 ) ! ) = λ ( e − λ e λ + λ e − λ e λ ) = λ ( 1 + λ ) D ( X ) = E ( X 2 ) − E 2 ( X ) = λ ( 1 + λ ) − λ 2 = λ \begin{aligned} E(X^2) & = \sum^{\infty}_{i = 0} \frac{i^2 e^{- \lambda} \lambda^i}{i !} \\ & = \lambda \sum^{\infty}_{i = 1} \frac{i e^{- \lambda} \lambda^{i - 1}}{(i - 1)!} \\ & = \lambda \left(e^{- \lambda} \sum^{\infty}_{k = 0} \frac{\lambda^k}{k!} + \lambda \int \limits^{\infty}_{k = 1} \frac{e^{-\lambda} \lambda ^{k - 1}}{(k - 1)!} \right) \\ & = \lambda \left(e^{- \lambda} e^{\lambda} + \lambda e^{-\lambda} e^\lambda \right) \\ & = \lambda (1 + \lambda) \end{aligned} \\ D(X) = E(X^2) - E^2(X) = \lambda(1 + \lambda) - \lambda^2 = \lambda E(X2)=i=0i!i2eλλi=λi=1(i1)!ieλλi1=λeλk=0k!λk+λk=1(k1)!eλλk1=λ(eλeλ+λeλeλ)=λ(1+λ)D(X)=E(X2)E2(X)=λ(1+λ)λ2=λ

例如:
在这里插入图片描述

2.7 总结

离散概率分布概率质量函数 p ( x ) p(x) p(x)矩母函数 ϕ ( t ) \phi(t) ϕ(t)期望 E ( X ) E(X) E(X)方差 D ( X ) D(X) D(X)
离散随机变量 p ( a ) = P { X = a } p(a) = P\{X = a\} p(a)=P{X=a} ∑ x e t x p ( x ) \sum_x e^{tx} p(x) xetxp(x) ∑ x x p ( x ) ϕ ′ ( 0 ) \sum_x x p(x) \\ \phi^\prime(0) xxp(x)ϕ(0) E ( X 2 ) − E 2 ( X ) ϕ ′ ′ ( 0 ) − [ ϕ ′ ( 0 ) ] 2 E(X^2) - E^2(X) \\ \phi^{\prime \prime}(0) - [\phi^\prime(0)]^2 E(X2)E2(X)ϕ(0)[ϕ(0)]2
伯努利分布 p ( 0 ) = 1 − p p ( 1 ) = p p(0) = 1 - p \\ p(1) = p p(0)=1pp(1)=p p e t + ( 1 − p ) pe^t + (1 - p) pet+(1p) p p p p ( 1 − p ) p(1 - p) p(1p)
二项分布 p ( x ) = ( n x ) p x ( 1 − p ) n − x p(x) = \dbinom{n}{x} p^x (1 - p)^{n - x} p(x)=(xn)px(1p)nx ( p e t + ( 1 − p ) ) n (pe^t + (1 - p))^n (pet+(1p))n n p np np n p ( 1 − p ) np(1 - p) np(1p)
几何分布 p ( x ) = ( 1 − p ) x − 1 p p(x) = (1 - p)^{x - 1}p p(x)=(1p)x1p p e t 1 − ( 1 − p ) e t \frac{p e^t}{1 - (1 - p) e^t} 1(1p)etpet 1 p \frac{1}{p} p1 1 − p p 2 \frac{1 - p}{p^2} p21p
超几何分布 p ( x ) = C M x C N − M n − x C N n p(x) = \frac{C^x_M C^{n - x}_{N - M}}{C^n_N} p(x)=CNnCMxCNMnx ∑ x e t x p ( x ) \sum_x e^{tx} p(x) xetxp(x) n M N \frac{nM}{N} NnM n M N ( 1 − M N ) ( 1 − n − 1 N − 1 ) n\frac{M}{N}(1 - \frac{M}{N})(1 - \frac{n - 1}{N - 1}) nNM(1NM)(1N1n1)
泊松分布 p ( x ) = e − λ λ x x ! p(x) = e^{-\lambda} \frac{\lambda^x}{x!} p(x)=eλx!λx e λ ( e t − 1 ) e^{\lambda(e^t - 1)} eλ(et1) λ \lambda λ λ \lambda λ

3. 连续随机变量、期望、方差

3.1 连续随机变量

一个随机变量的可能值是不可数的,记为X,则X是一个连续的随机变量 ∃ f ( x ) ≥ 0 且 x ∈ ( − ∞ ,   ∞ ) , 使 ∀ 实 数 X ∈ B \exist f(x) \geq 0且x \in (-\infty,\ \infty),使\forall 实数X \in B f(x)0x(, )使XB,有X的概率密度函数 P { X ∈ B } = ∫ B f ( x ) d x P\{X \in B\} = \int_Bf(x) dx P{XB}=Bf(x)dx

f ( x ) f(x) f(x)必定满足 1 = P { X ∈ ( − ∞ ,   ∞ ) } = ∫ − ∞ ∞ f ( x ) d x 1 = P\{X \in (-\infty,\ \infty)\} = \int^{\infty}_{-\infty} f(x) dx 1=P{X(, )}=f(x)dx

例如:设 B = [ a ,   b ] ,   则 P { a ≤ X ≤ b } = ∫ a b f ( x ) d x B = [a,\ b],\ 则P\{a \leq X \leq b\} = \int^{b}_{a} f(x) dx B=[a, b], P{aXb}=abf(x)dx

累积分布函数F和 f f f的关系表示为 F ( a ) = P { X ∈ ( − ∞ , a ] } = ∫ − ∞ a f ( x ) d x \\F(a) = P\{X \in (-\infty, a]\} = \int \limits^a_{-\infty} f(x) dx F(a)=P{X(,a]}=af(x)dx

密度函数是累积分布函数的导数

期望:
E [ x ] = ∫ − ∞ ∞ x f ( x ) d x E[x] = \int \limits^{\infty}_{- \infty} xf(x) dx E[x]=xf(x)dx

方差:
D ( X ) = E ( X 2 ) − E 2 ( X ) = ∫ − ∞ ∞ x 2 f ( x ) d x − [ ∫ − ∞ ∞ x f ( x ) d x ] 2 D(X) = E(X^2) - E^2(X) = \int \limits^{\infty}_{- \infty} x^2 f(x) dx - \left[ \int \limits^{\infty}_{- \infty} x f(x) dx \right]^2 D(X)=E(X2)E2(X)=x2f(x)dx[xf(x)dx]2

3.2 均匀随机变量

均匀随机变量: 一个随机变量X在 ( α ,   β ) (\alpha,\ \beta) (α, β)的任意特定子区间的概率等于该子区间的长度。

X是区间 ( α ,   β ) (\alpha,\ \beta) (α, β)上的均匀随机变量,则概率密度函数
f ( x ) = { 1 β − α α < x < β 0 其 它 f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha < x < \beta \\ 0 & 其它 \end{cases} f(x)={βα10α<x<β

期望:
E ( X ) = β + α 2 E(X) = \frac{\beta + \alpha}{2} E(X)=2β+α
求解过程:
E ( X ) = ∫ α β x β − α d x = x 2 2 ( β − α ) ∣ α β = β + α 2 \begin{aligned} E(X) & = \int^\beta_\alpha \frac{x}{\beta - \alpha} dx \\ & = \frac{x^2}{2(\beta - \alpha)} |^\beta_\alpha \\ & = \frac{\beta + \alpha}{2} \end{aligned} E(X)=αββαxdx=2(βα)x2αβ=2β+α

方差:
D ( X ) = ( β − α ) 2 12 D(X) = \frac{(\beta - \alpha)^2}{12} D(X)=12(βα)2
求解过程:
E ( X 2 ) = ∫ α β x 2 β − α d x = x 3 3 ( β − α ) ∣ α β = β 2 + α 2 + α β 3 D ( X ) = E ( X 2 ) − E 2 ( X ) = β 2 + α 2 + α β 3 − [ β − α 2 ] 2 = ( β − α ) 2 12 \begin{aligned} E(X^2) & = \int \limits^\beta_\alpha \frac{x^2}{\beta - \alpha} dx \\ & = \frac{x^3}{3(\beta - \alpha)} |^\beta_\alpha \\ & = \frac{\beta^2 + \alpha_2 + \alpha\beta}{3} \end{aligned} \\ D(X) = E(X^2) - E^2(X) = \frac{\beta^2 + \alpha^2 + \alpha\beta}{3} - [\frac{\beta - \alpha}{2}]^2 = \frac{(\beta - \alpha)^2}{12} E(X2)=αββαx2dx=3(βα)x3αβ=3β2+α2+αβD(X)=E(X2)E2(X)=3β2+α2+αβ[2βα]2=12(βα)2

\newline

例如:
1. 计算均匀分布在 ( α , β ) (\alpha, \beta) (α,β)上的随机变量的累积分布函数。
解:
f ( x ) = { 1 β − α α < x < β 0 其 它 f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha < x < \beta \\ 0 & 其它 \end{cases} f(x)={βα10α<x<β
累积分布函数 F ( a ) = ∫ − ∞ a f ( x ) d x F(a) = \int^a_{- \infty} f(x) dx F(a)=af(x)dx
a ≤ α a \leq \alpha aα时, F ( a ) = ∫ − ∞ a f ( x ) d x = ∫ − ∞ a 0 d x = 0 F(a) = \int^a_{- \infty} f(x) dx = \int^a_{- \infty} 0 dx = 0 F(a)=af(x)dx=a0dx=0
a < β a < \beta a<β时, F ( a ) = ∫ − ∞ a f ( x ) d x = ∫ − ∞ α f ( x ) d x + ∫ α a f ( x ) d x = 0 + 1 β − α x ∣ α a = a − α β − α F(a) = \int^a_{- \infty} f(x) dx = \int^{\alpha}_{- \infty} f(x) dx + \int^{a}_{\alpha} f(x) dx = 0 + \frac{1}{\beta - \alpha} x |^a_\alpha = \frac{a - \alpha}{\beta - \alpha} F(a)=af(x)dx=αf(x)dx+αaf(x)dx=0+βα1xαa=βαaα
a ≥ β a \geq \beta aβ时, F ( a ) = ∫ − ∞ a f ( x ) d x = ∫ − ∞ α f ( x ) d x + ∫ α β f ( x ) d x + ∫ β a f ( x ) d x = 0 + 1 β − α ∣ α β + 0 = 1 F(a) = \int^{a}_{- \infty} f(x) dx = \int^{\alpha}_{- \infty} f(x) dx + \int^{\beta}_{ \alpha} f(x) dx + \int^{a}_{\beta} f(x) dx = 0 + \frac{1}{\beta - \alpha} |^\beta_\alpha + 0 = 1 F(a)=af(x)dx=αf(x)dx+αβf(x)dx+βaf(x)dx=0+βα1αβ+0=1
综上有
F ( a ) = { 0 a ≤ α a − α β − α α < a < β 1 α ≥ β F(a) = \begin{cases} 0 & a \leq \alpha \\ \frac{a - \alpha}{\beta - \alpha} & \alpha < a < \beta \\ 1 & \alpha \geq \beta \end{cases} F(a)=0βαaα1aαα<a<βαβ

\newline

2. X均匀分布在 ( 0 ,   10 ) (0,\ 10) (0, 10)上,计算概率 ( a ) X < 3 ( b ) X > 7 ( c ) 1 < X < 6 (a) X < 3 \quad (b) X > 7 \quad (c) 1 < X < 6 (a)X<3(b)X>7(c)1<X<6
解:
f ( x ) = { 1 10 0 < x < 10 0 其 它 f(x) = \begin{cases} \frac{1}{10} & 0 < x < 10 \\ 0 & 其它 \end{cases} f(x)={10100<x<10

P { X < 3 } = ∫ − ∞ 3 f ( x ) d x = ∫ − ∞ 0 0 d x + ∫ 0 3 1 10 d x = 3 10 P { X > 7 } = ∫ − ∞ ∞ f ( x ) d x − ∫ − ∞ 7 f ( x ) d x = ∫ 0 10 1 10 d x − ∫ 0 7 1 10 d x = 3 10 P { 1 < X < 6 } = ∫ 1 6 1 10 d x = 1 2 P\{X < 3\} = \int^3_{- \infty} f(x) dx = \int^0_{- \infty} 0 dx + \int^3_0 \frac{1}{10} dx = \frac{3}{10} \\ P\{X > 7\} = \int^{\infty}_{- \infty} f(x) dx - \int^{7}_{- \infty} f(x) dx = \int^{10}_0 \frac{1}{10} dx - \int^{7}_{0} \frac{1}{10} dx = \frac{3}{10} \\ P\{1 < X < 6\} = \int^6_1 \frac{1}{10} dx = \frac{1}{2} P{X<3}=3f(x)dx=00dx+03101dx=103P{X>7}=f(x)dx7f(x)dx=010101dx07101dx=103P{1<X<6}=16101dx=21

3.3 指数随机变量

若一个连续随机变量的概率密度函数给定为,对于某个 λ > 0 \lambda > 0 λ>0
f ( x ) = { λ e − λ x x ≥ 0 0 x < 0 f(x) = \begin{cases} \lambda e^ {- \lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={λeλx0x0x<0
则称其为具有参数 λ \lambda λ指数随机变量

累积分布函数F
F ( a ) = ∫ 0 a λ e − λ x d x = 1 − e − λ a a ≥ 0 F(a) = \int \limits^a_0 \lambda e^{- \lambda x} dx = 1 - e^{- \lambda a} \quad a \geq 0 F(a)=0aλeλxdx=1eλaa0

期望:
E ( X ) = 1 λ E(X) = \frac{1}{\lambda} E(X)=λ1
求解过程:
E ( X ) = ∫ 0 ∞ x λ e − λ x d x = ∫ 0 ∞ − x d ( e − λ x ) = − x e − λ x ∣ 0 ∞ + ∫ 0 ∞ e − λ x d x = − x e − λ x ∣ 0 ∞ − 1 λ e − λ x ∣ 0 ∞ = 1 λ \begin{aligned} E(X) & = \int^\infty_0 x \lambda e^{- \lambda x} dx \\ & = \int^\infty_0 -x d(e^{- \lambda x}) \\ & = -x e^{- \lambda x} |^\infty_0 + \int^\infty_0 e^{- \lambda x} dx \\ & = -x e^{- \lambda x} |^\infty_0 - \frac{1}{\lambda} e^{- \lambda x} |^\infty_0 \\ & = \frac{1}{\lambda} \end{aligned} E(X)=0xλeλxdx=0xd(eλx)=xeλx0+0eλxdx=xeλx0λ1eλx0=λ1

方差:
E ( X 2 ) = ∫ 0 ∞ x 2 λ e − λ x d x = ∫ 0 ∞ − x 2 d ( e − λ x ) = − x 2 e − λ x ∣ 0 ∞ + ∫ 0 ∞ e − λ x d x 2 = − x 2 e − λ x ∣ 0 ∞ − 2 λ [ x e − λ x ∣ 0 ∞ + 1 λ e − λ x ∣ 0 ∞ ] = 0 − 2 λ ( 0 − 1 λ ) = 2 λ 2 D ( X ) = E ( X 2 ) − E 2 ( X ) = 2 λ 2 − ( 1 λ ) 2 = 1 λ 2 \begin{aligned} E(X^2) & = \int^\infty_0 x^2 \lambda e^{- \lambda x} dx \\ & = \int^\infty_0 -x^2 d(e^{- \lambda x}) \\ & = -x^2 e^{- \lambda x} |^\infty_0 + \int^\infty_0 e^{- \lambda x} dx^2 \\ & = -x^2 e^{- \lambda x} |^\infty_0 - \frac{2}{\lambda} \left[x e^{- \lambda x} |^\infty_0 + \frac{1}{\lambda} e^{- \lambda x} |^\infty_0 \right] \\ & = 0 - \frac{2}{\lambda} (0 - \frac{1}{\lambda}) \\ & = \frac{2}{\lambda^2} \end{aligned} \\ D(X) = E(X^2) - E^2(X) = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2} E(X2)=0x2λeλxdx=0x2d(eλx)=x2eλx0+0eλxdx2=x2eλx0λ2[xeλx0+λ1eλx0]=0λ2(0λ1)=λ22D(X)=E(X2)E2(X)=λ22(λ1)2=λ21

3.4 伽马随机变量

密度函数给定为,对于 λ > 0 , α > 0 \lambda > 0,\alpha > 0 λ>0α>0
f ( x ) = { λ e − λ x ( λ x ) α − 1 Γ ( α ) x ≥ 0 0 x < 0 f(x) = \begin{cases} \frac{\lambda e^{- \lambda x}(\lambda x) ^ {\alpha - 1}}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={Γ(α)λeλx(λx)α10x0x<0的连续随机变量,称为具有参数 λ \lambda λ α \alpha α伽马随机变量 Γ ( α ) \Gamma(\alpha) Γ(α)称为伽马函数,定义为 Γ ( α ) = ∫ 0 ∞ e − x x α − 1 d x \Gamma(\alpha) = \int^\infty_0 e^{-x} x^{\alpha - 1} dx Γ(α)=0exxα1dx

3.5 正态随机变量

X是具有参数 μ \mu μ σ 2 \sigma^2 σ2正态随机变量(或者简单地说,X是正态地分布),X的概率密度函数
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{- (x - \mu)^2}{2 \sigma^2}} f(x)=2π σ1e2σ2(xμ)2

如果X以参数 μ \mu μ σ 2 \sigma^2 σ2正态地分布,那么 Y = α X + β Y = \alpha X + \beta Y=αX+β以参数 α μ + β \alpha \mu + \beta αμ+β α 2 σ 2 \alpha^2 \sigma^2 α2σ2正态地分布

期望:
E ( X ) = u E(X) = u E(X)=u
求解过程:
E ( X ) = 1 2 π σ ∫ − ∞ ∞ x e − ( x − μ ) 2 2 σ 2 d x = 1 2 π σ ∫ − ∞ ∞ ( x − μ ) e − ( x − u ) 2 2 σ 2 d x + μ 1 2 π σ ∫ − ∞ ∞ e − ( x − μ ) 2 2 σ 2 d x = 1 2 π σ ∫ − ∞ ∞ y e − y 2 2 σ 2 d y + μ ∫ − ∞ ∞ f ( x ) d x = μ ∫ − ∞ ∞ f ( x ) d x = μ \begin{aligned} E(X) & = \frac{1}{\sqrt{2 \pi} \sigma} \int^\infty_{- \infty} x e^{\frac{-(x - \mu)^2}{2 \sigma^2}} dx \\ & = \frac{1}{\sqrt{2 \pi} \sigma} \int^\infty_{- \infty} (x - \mu) e^{\frac{-(x - u)^2}{2 \sigma^2}} dx + \mu \frac{1}{\sqrt{2 \pi} \sigma} \int^\infty_{- \infty} e^{\frac{-(x - \mu)^2}{2 \sigma^2}} dx \\ & = \frac{1}{\sqrt{2 \pi} \sigma} \int^\infty_{- \infty} y e^{\frac{-y^2}{2 \sigma^2}} dy + \mu \int^\infty_{- \infty} f(x) dx \\ & = \mu \int^\infty_{- \infty} f(x) dx \\ & = \mu \end{aligned} E(X)=2π σ1xe2σ2(xμ)2dx=2π σ1(xμ)e2σ2(xu)2dx+μ2π σ1e2σ2(xμ)2dx=2π σ1ye2σ2y2dy+μf(x)dx=μf(x)dx=μ

方差:
D ( X ) = σ 2 D(X) = \sigma^2 D(X)=σ2
求解过程:

3.6 总结

连续概率分布概率密度函数 f ( x ) f(x) f(x)矩母函数 ϕ ( t ) \phi(t) ϕ(t)期望 E ( X ) E(X) E(X)方差 D ( X ) D(X) D(X)
连续随机变量 P { X ∈ B } = ∫ B f ( x ) d x P\{X \in B\} = \int_Bf(x) dx P{XB}=Bf(x)dx ∫ B e t x f ( x ) d x \int_B e^{tx} f(x) dx Betxf(x)dx ∫ − ∞ ∞ x f ( x ) d x ϕ ′ ( 0 ) \int_{-\infty}^{\infty}x f(x) dx\\ \phi^\prime(0) xf(x)dxϕ(0) E ( X 2 ) − E 2 ( X ) ϕ ′ ′ ( 0 ) − [ ϕ ′ ( 0 ) ] 2 E(X^2) - E^2(X) \\ \phi^{\prime \prime}(0) - [\phi^\prime(0)]^2 E(X2)E2(X)ϕ(0)[ϕ(0)]2
均匀分布 f ( x ) = { 1 b − a a < x < b 0 其 它 f(x) = \begin{cases} \frac{1}{b - a} & a < x < b \\0 & 其它 \end{cases} f(x)={ba10a<x<b e b t − e a t ( b − a ) t \frac{e^{bt} - e^{at}}{(b - a)t} (ba)tebteat a + b 2 \frac{a + b}{2} 2a+b ( b − a ) 2 12 \frac{(b - a)^2}{12} 12(ba)2
指数分布 f ( x ) = { λ e − λ x x ≥ 0 0 x < 0 f(x) = \begin{cases} \lambda e^ {- \lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={λeλx0x0x<0 λ λ − t \frac{\lambda}{\lambda - t} λtλ 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda^2} λ21
伽马分布 f ( x ) = { λ e − λ x ( λ x ) α − 1 Γ ( α ) x ≥ 0 0 x < 0 f(x) = \begin{cases} \frac{\lambda e^{- \lambda x}(\lambda x) ^ {\alpha - 1}}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={Γ(α)λeλx(λx)α10x0x<0 ( λ λ − t ) n \begin{pmatrix}\frac{\lambda}{\lambda - t}\end{pmatrix}^n (λtλ)n n λ \frac{n}{\lambda} λn n λ 2 \frac{n}{\lambda^2} λ2n
正态分布 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{- (x - \mu)^2}{2 \sigma^2}} f(x)=2π σ1e2σ2(xμ)2 e μ t + σ 2 t 2 2 e^{\mu t + \frac{\sigma^2 t^2}{2}} eμt+2σ2t2 μ \mu μ σ 2 \sigma^2 σ2

4. 联合分布的随机变量

任意两个随机变量X和Y,定义X和Y的联合累积概率分布函数
F ( a ,   b ) = p { X ≤ a ,   Y ≤ b } − ∞ < a , b < ∞ F(a,\ b) = p\{X \leq a,\ Y \leq b\} \qquad -\infty < a, b < \infty F(a, b)=p{Xa, Yb}<a,b<

X的分布可以由X和Y的联合分布得到
F X ( a ) = P { X ≤ a } = P { X ≤ a ,   Y < ∞ } = F ( a ,   ∞ ) F_X(a) = P\{X \leq a\} = P\{X \leq a,\ Y < \infty\} = F(a,\ \infty) FX(a)=P{Xa}=P{Xa, Y<}=F(a, )

Y的分布可以由X和Y的联合分布得到
F Y ( b ) = P { Y ≤ b } = P { X < ∞ ,   Y ≤ b } = F ( ∞ ,   b ) F_Y(b) = P\{Y \leq b\} = P\{X < \infty,\ Y \leq b\} = F(\infty,\ b) FY(b)=P{Yb}=P{X<, Yb}=F(, b)

联合概率密度函数:
∃ f ( x , y ) ,   ∀ x ,   y ∈ R ,   有 P { X ∈ A ,   Y ∈ B } = ∫ B ∫ A f ( x ,   y ) d x d y \exist f(x, y),\ \forall x,\ y \in R,\ 有P\{X \in A,\ Y \in B\} = \int \limits_B \int \limits_A f(x,\ y) dx dy f(x,y), x, yR, P{XA, YB}=BAf(x, y)dxdy

X的概率密度函数:
f X ( x ) = ∫ − ∞ ∞ f ( x ,   y ) d y f_X(x) = \int \limits^\infty_{- \infty} f(x,\ y) dy fX(x)=f(x, y)dy

Y的概率密度函数:
f Y ( y ) = ∫ − ∞ ∞ f ( x ,   y ) d x f_Y(y) = \int \limits^\infty_{- \infty} f(x,\ y) dx fY(y)=f(x, y)dx

函数的概率密度函数:
E [ g ( X ,   Y ) ] = { ∑ y ∑ x g ( x ,   y ) p ( x ,   y ) 离 散 情 形 ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x ,   y ) f ( x ,   y ) d x d y 连 续 情 形 E[g(X,\ Y)] = \begin{cases} \sum \limits_y \sum \limits_x g(x,\ y) p(x,\ y) & 离散情形 \\ \int \limits^\infty_{- \infty} \int \limits^\infty_{- \infty} g(x,\ y) f(x,\ y) dx dy & 连续情形 \end{cases} \newline E[g(X, Y)]=yxg(x, y)p(x, y)g(x, y)f(x, y)dxdy

E ( ∑ i = 1 n a i X i ) = ∑ i = 1 n a i E ( X i ) E(\sum \limits_{i = 1}^n a_iX_i) = \sum \limits^n_{i = 1}a_i E(X_i) E(i=1naiXi)=i=1naiE(Xi)

例如:在这里插入图片描述
独立随机变量: ∀ a ,   b ,    有 P { X ≤ a ,   Y ≤ b } = P { X ≤ a } P { Y ≤ b } \forall a,\ b,\ \ 有P\{X \leq a,\ Y \leq b\} = P\{X \leq a\} P\{Y \leq b\} a, b,  P{Xa, Yb}=P{Xa}P{Yb}
若X和Y为独立随机变量,其联合分布函数为F,则 F ( a ,   b ) = F X ( a ) F Y ( b ) F(a,\ b) = F_X(a) F_Y(b) F(a, b)=FX(a)FY(b)
当X和Y都是离散时,独立的条件简化为 p ( x ,   y ) = p X ( x ) p Y ( y ) p(x,\ y) = p_X(x) p_Y(y) p(x, y)=pX(x)pY(y)
当X和Y都是连续时,独立的条件简化为 f ( x   y ) = f X ( x ) f Y ( y ) f(x\ y) = f_X(x) f_Y(y) f(x y)=fX(x)fY(y)
若果X和Y是独立的,那么对于任意函数g和h,有 E [ g ( X ) h ( Y ) ] = E [ g ( X ) ] E [ h ( Y ) ] E[g(X)h(Y)] = E[g(X)] E[h(Y)] E[g(X)h(Y)]=E[g(X)]E[h(Y)]

协方差:
C o v ( X ,   Y ) = E [ ( X − E [ X ] ) ( Y − E [ Y ] ) ] = E [ X Y − Y E [ X ] − X E [ Y ] + E [ X ] E [ Y ] ] = E [ X Y ] − E [ Y ] E [ X ] − E [ X ] E [ Y ] + E [ X ] E [ Y ] = E [ X Y ] − E [ X ] E [ Y ] \begin{aligned} Cov(X,\ Y) & = E[(X - E[X])(Y - E[Y])] \\ & = E[XY - YE[X] - XE[Y] + E[X]E[Y]] \\ & = E[XY] - E[Y]E[X] - E[X]E[Y] + E[X]E[Y] \\ & = E[XY] - E[X]E[Y] \end{aligned} Cov(X, Y)=E[(XE[X])(YE[Y])]=E[XYYE[X]XE[Y]+E[X]E[Y]]=E[XY]E[Y]E[X]E[X]E[Y]+E[X]E[Y]=E[XY]E[X]E[Y]

若X和Y独立,则 C o v ( X ,   Y ) = 0 Cov(X,\ Y) = 0 Cov(X, Y)=0
C o v ( X ,   Y ) > 0 ⇒ Cov(X,\ Y) > 0 \Rightarrow Cov(X, Y)>0 X增加时,Y倾向于增加
C o v ( X ,   Y ) < 0 ⇒ \newline Cov(X,\ Y) < 0 \Rightarrow Cov(X, Y)<0 X增加时,Y倾向于减少

C o v ( X ,   X ) = V a r ( X ) C o v ( X ,   Y ) = C o v ( Y ,   X ) C o v ( c X ,   Y ) = c C o v ( X ,   Y ) C o v ( X ,   Y + Z ) = C o v ( X ,   Y ) + C o v ( X ,   Z ) C o v ( ∑ i = 1 n X i ,   ∑ i = 1 n Y i ) = ∑ i = 1 n ∑ i = 1 n C o v ( X i ,   Y i ) Cov(X,\ X) = Var(X) \newline Cov(X,\ Y) =Cov(Y,\ X) \newline Cov(cX,\ Y) = cCov(X,\ Y) \newline Cov(X,\ Y + Z) = Cov(X,\ Y) + Cov(X,\ Z) \newline Cov(\sum \limits^n_{i = 1}X_i,\ \sum \limits^n_{i = 1} Y_i) = \sum \limits^n_{i = 1} \sum \limits^n_{i = 1} Cov(X_i,\ Y_i)\newline Cov(X, X)=Var(X)Cov(X, Y)=Cov(Y, X)Cov(cX, Y)=cCov(X, Y)Cov(X, Y+Z)=Cov(X, Y)+Cov(X, Z)Cov(i=1nXi, i=1nYi)=i=1ni=1nCov(Xi, Yi)

V a r ( ∑ i = 1 n X i ) = ∑ i = 1 n V a r ( X i ) + 2 ∑ i = 1 n ∑ j < i C o v ( X i , X j ) Var(\sum \limits^n_{i = 1}X_i) = \sum \limits^n_{i = 1} Var(X_i) + 2\sum \limits^n_{i = 1}\sum \limits_{j < i}Cov(X_i, X_j) Var(i=1nXi)=i=1nVar(Xi)+2i=1nj<iCov(Xi,Xj)
X i X_i Xi是独立随机变量时, V a r ( ∑ i = 1 n X i ) = ∑ i = 1 n V a r ( X i ) Var(\sum \limits^n_{i = 1} X_i) = \sum \limits^n_{i = 1}Var(X_i) Var(i=1nXi)=i=1nVar(Xi)

这两个公式常用来计算方差
例如:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

样本均值: X 1 ,   ⋯   ,   X n X_1,\ \cdots,\ X_n X1, , Xn独立同分布,则随机变量 X ‾ = ∑ i = 1 n X i n \overline X = \sum \limits^n_{i = 1} \frac{X_i}{n} X=i=1nnXi就是样本均值
均值是总和/个数,期望是带上概率计算出来的“均值”

X 1 ,   ⋯   ,   X n 独 立 同 分 布 , E ( X ) = μ , D ( X ) = σ 2 X_1,\ \cdots,\ X_n独立同分布,E(X) = \mu,D(X) = \sigma^2 X1, , XnE(X)=μD(X)=σ2,则
1. E [ X ‾ ] = μ 2. V a r ( X ‾ ) = σ 2 n 3. C o v ( X ‾ ,   X i − X ‾ ) = 0 \quad 1.\quad E[\overline X] = \mu \\ \quad 2.\quad Var(\overline X) = \frac{\sigma^2}{n} \\ \quad 3.\quad Cov(\overline X,\ X_i - \overline X) = 0 1.E[X]=μ2.Var(X)=nσ23.Cov(X, XiX)=0

累积分布函数 F X + Y F_{X+Y} FX+Y X, Y连续,
F X + Y ( a ) = P { X + Y ≤ a } = ∫ ∫ x + y ≤ a f ( x ) g ( y ) d y = ∫ − ∞ ∞ ∫ − ∞ a − y f ( x ) g ( y ) d x d y = ∫ − ∞ ∞ ( ∫ − ∞ a − y f ( x ) d x ) g ( y ) d y = ∫ − ∞ ∞ F X ( a − y ) g ( y ) d y \begin{aligned} F_{X + Y}(a) & = P\{X + Y \leq a\} \\ & = \int \int \limits_{x + y \leq a} f(x) g(y) dy \\ & = \int \limits^{\infty}_{- \infty} \int \limits^{a - y}_{- \infty} f(x) g(y) dxdy \\ & = \int \limits^{\infty}_{- \infty} \left(\int \limits^{a - y}_{- \infty} f(x) dx \right) g(y) dy \\ & = \int \limits^\infty_{- \infty} F_X(a - y) g(y) dy \end{aligned} FX+Y(a)=P{X+Ya}=x+yaf(x)g(y)dy=ayf(x)g(y)dxdy=ayf(x)dxg(y)dy=FX(ay)g(y)dy

概率密度 f X + Y ( a ) f_{X + Y}(a) fX+Y(a)
f X + Y ( a ) = d d a F ( X + Y ) ( a ) = d d a ∫ − ∞ ∞ F X ( a − y ) g ( y ) d y = ∫ − ∞ ∞ d d a F X ( a − y ) g ( y ) d y = ∫ − ∞ ∞ f ( a − y ) g ( y ) d y \begin{aligned} f_{X + Y}(a) & = \frac{d}{da} F_{(X + Y)}(a) \\ & = \frac{d}{da} \int \limits^\infty_{- \infty} F_X(a - y) g(y) dy \\ & = \int \limits^\infty_{- \infty} \frac{d}{da} F_X(a - y) g(y) dy \\ & = \int \limits^\infty_{- \infty}f(a - y)g(y) dy \end{aligned} fX+Y(a)=dadF(X+Y)(a)=dadFX(ay)g(y)dy=dadFX(ay)g(y)dy=f(ay)g(y)dy

例如:
在这里插入图片描述
在这里插入图片描述
随机变量的函数的联合概率分布:
1.  y 1 = g 1 ( x 1 , x 2 ) 和 y 2 = g 2 ( x 1 , x 2 ) y_1 = g_1(x_1, x_2)和y_2 = g_2(x_1, x_2) y1=g1(x1,x2)y2=g2(x1,x2)可以唯一解出 x 1 x_1 x1 x 2 x_2 x2,利用 y 1 y_1 y1 y 2 y_2 y2给出 x 1 = h 1 ( y 1 , y 2 ) 和 x 2 = h 2 ( y 1 , y 2 ) x_1 = h_1(y_1, y_2)和x_2 = h_2(y_1, y_2) x1=h1(y1,y2)x2=h2(y1,y2)
2.  g 1 和 g 2 g_1和g_2 g1g2在所有的点 ( x 1 , x 2 ) (x_1, x_2) (x1,x2)上有连续的偏导数,且
J ( x 1 , x 2 ) = ∣ d g 1 d x 1 d g 1 d x 2 d g 2 d x 1 d g 2 d x 2 ∣ ≠ 0 J(x_1, x_2) = \begin{vmatrix} \frac{d g_1}{d x_1} & \frac{d g_1}{d x_2} \\ \\ \frac{d g_2}{d x_1} & \frac{d g_2}{d x_2} \end{vmatrix} \neq 0 J(x1,x2)=dx1dg1dx1dg2dx2dg1dx2dg2=0
在这两个条件下, Y 1 和 Y 2 Y_1和Y_2 Y1Y2的联合密度函数为
f Y 1 , Y 2 ( y 1 , y 2 ) = f X 1 , X 2 ( x 1 , x 2 )   ∣ J ( x 1 , x 2 ) ∣ − 1 f_{Y_1, Y_2}(y_1, y_2) = f_{X_1, X_2}(x_1, x_2) \ |J(x_1, x_2)|^{-1} fY1,Y2(y1,y2)=fX1,X2(x1,x2) J(x1,x2)1
其中 x 1 = h 1 ( y 1 , y 2 ) ,   x 2 = h 2 ( y 1 , y 2 ) x_1 = h_1(y_1, y_2),\ x_2 = h_2(y_1, y_2) x1=h1(y1,y2), x2=h2(y1,y2)
例如:
在这里插入图片描述
在这里插入图片描述
从上面那个例题中,我们可以发现, X + Y 和 X / ( X + Y ) X + Y和X / (X + Y) X+YX/(X+Y)是独立的,而且 X + Y X + Y X+Y有参数为 ( α + β ,   λ ) (\alpha + \beta,\ \lambda) (α+β, λ)的伽马分布,而 X / ( X + Y ) X / (X + Y) X/(X+Y)有密度函数 f V ( v ) = Γ ( α + β ) Γ ( α )   Γ ( β ) v α − 1 ( 1 − v ) β − 1 , 0 < v < 1 f_V(v) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\ \Gamma(\beta)} v^{\alpha - 1} (1 - v)^{\beta - 1},0 < v < 1 fV(v)=Γ(α) Γ(β)Γ(α+β)vα1(1v)β10<v<1
联合概率分布个人理解是:
有一个由随机变量 X , Y , ⋯ X, Y, \cdots X,Y,组成的概率空间,然后通过某种映射方式将 X , Y , ⋯ X, Y, \cdots X,Y,映射到 U , V , ⋯ U, V, \cdots U,V,,然后形成一个由 U , V , ⋯ U, V, \cdots U,V,组成的新的概率空间。

贝塔密度(以 ( α ,   β ) (\alpha,\ \beta) (α, β)为参数): Γ ( α + β ) Γ ( α )   Γ ( β ) v α − 1 ( 1 − v ) β − 1 , 0 < v < 1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\ \Gamma(\beta)} v^{\alpha - 1} (1 - v)^{\beta - 1},0 < v < 1 Γ(α) Γ(β)Γ(α+β)vα1(1v)β10<v<1

5. 矩母函数

ϕ ( t ) = E [ e t X ] = { ∑ x e t X p ( x ) X 离 散 ∫ − ∞ ∞ e t x f ( x ) d x X 连 续 \phi (t) = E[e^{tX}] = \begin{cases} \sum_x e^{tX} p(x) \quad X离散 \\ \\ \int^\infty_{-\infty} e^{tx} f(x) dx \quad X连续 \end{cases} ϕ(t)=E[etX]=xetXp(x)Xetxf(x)dxX
ϕ ( t ) \phi(t) ϕ(t)称为矩母函数,因为X的所有矩都能有 ϕ ( t ) \phi(t) ϕ(t)求微分(求导)得到
矩: 对变量分布和形态特点的一组度量
ϕ ( n ) ( 0 ) = E [ X n ] \phi^{(n)}(0) = E[X^n] ϕ(n)(0)=E[Xn],即矩母函数的n阶导在t=0时等于 E [ X n ] E[X^n] E[Xn]
期望: ϕ ′ ( 0 ) \phi^\prime(0) ϕ(0)
方差: ϕ ′ ′ ( 0 ) − [ ϕ ′ ( 0 ) ] 2 \phi^{\prime \prime}(0) - [\phi^\prime(0)]^2 ϕ(0)[ϕ(0)]2
ϕ X + Y ( t ) = E [ e t ( X + Y ) ] = E [ e t X e t Y ] = E [ e t X ] E [ e t Y ] = ϕ X ( t ) ϕ Y ( t ) \phi_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = \phi_X(t)\phi_Y(t) ϕX+Y(t)=E[et(X+Y)]=E[etXetY]=E[etX]E[etY]=ϕX(t)ϕY(t)
独立随机变量和的矩母函数正是单个矩母函数的乘积

ϕ ( t 1 , ⋯   , t n ) = E [ e ( t 1 X 1 + ⋯ + t n X n ) ] \phi(t_1, \cdots, t_n) = E[e^{(t_1 X_1 + \cdots + t_n X_n)}] ϕ(t1,,tn)=E[e(t1X1++tnXn)]
矩母函数唯一地确定了分布,即随机变量的矩母函数和分布函数之间存在一一对应。
拉普拉斯变换: g ( t ) = ϕ ( − t ) = E [ e − t X ] g(t) = \phi(-t) = E[e^{-tX}] g(t)=ϕ(t)=E[etX],即拉普拉斯变换在t处的赋值正是矩母函数在-t处的赋值。
拉普拉斯变换永远在0与1之间
有同样拉普拉斯变换的非负随机变量有同样的分布

样本方差: 假定 X 1 , ⋯   , X n X_1, \cdots, X_n X1,,Xn是独立同分布随机变量,每个具有均值 μ \mu μ和方差 σ 2 \sigma^2 σ2,则样本方差为 S 2 = ∑ i = 1 n ( X i − X ‾ ) 2 n − 1 S^2 = \sum^n_{i = 1} \frac{(X_i - \overline{X})^2}{n - 1} S2=i=1nn1(XiX)2
∑ i = 1 n ( X i − X ‾ ) 2 = ∑ i = 1 n ( X i − μ ) 2 − n ( X ‾ − μ ) 2 \sum^n_{i = 1} (X_i - \overline{X})^2 = \sum^n_{i = 1} (X_i - \mu)^2 - n(\overline{X} - \mu)^2 i=1n(XiX)2=i=1n(Xiμ)2n(Xμ)2
E ( S 2 ) = σ 2 E(S^2) = \sigma^2 E(S2)=σ2

卡方随机变量: Z 1 , ⋯   , Z n Z_1, \cdots, Z_n Z1,,Zn是独立的标准正态随机变量,那么随机变量 ∑ i = 1 n Z i 2 \sum^n_{i = 1} Z^2_i i=1nZi2称为具有自由度n的卡方随机变量
如果 X 1 , , ⋯   , X n X_1,, \cdots, X_n X1,,,Xn是独立同分布的正态随机变量,具有均值 μ \mu μ和方差 σ 2 \sigma^2 σ2,那么样本均值 X ‾ \overline{X} X与样本方差 S 2 S^2 S2是独立的。 X ‾ \overline{X} X是正态随机变量,具有均值 μ \mu μ和方差 σ 2 n \frac{\sigma^2}{n} nσ2 ( n − 1 ) S 2 σ 2 \frac{(n - 1)S^2}{\sigma^2} σ2(n1)S2是具有n-1个自由度的卡方随机变量
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6. 发生事件数的分布

7. 极限定理

马尔可夫不等式: X是只取非负值的随机变量,那么任意a > 0,有 P { X ≥ a } ≤ E [ X ] a P\{X \ge a\} \leq \frac{E[X]}{a} P{Xa}aE[X]
证明:
在这里插入图片描述
切比雪夫不等式: 如果X是具有均值 μ \mu μ和方差 σ 2 \sigma^2 σ2的随机变量,那么对于任意k>0,有 P { ∣ X − μ ∣ ≥ k } ≤ σ 2 k 2 P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2} P{Xμk}k2σ2

在这里插入图片描述
在只有概率分布的均值或者均值和方差已知时,它们使我们可以推得所求概率的上界

例如:
在这里插入图片描述

强大数定律: X 1 , X 2 , ⋯ X_1, X_2, \cdots X1,X2,是一列独立同分布的随机变量,令 E [ X i ] = μ E[X_i] = \mu E[Xi]=μ,那么当 n → ∞ n \rightarrow \infty n时以概率1有
X 1 + X 2 + ⋯ + X n n → μ \frac{X_1 + X_2 + \cdots + X_n}{n} \rightarrow \mu nX1+X2++Xnμ

即一列独立同分布的随机变量的平均值以概率1收敛到这个分布的均值

中心极限定理: 假定 X 1 , X 2 , ⋯ X_1, X_2, \cdots X1,X2,是一列独立同分布的随机变量,每个具有均值 μ \mu μ和方差 σ 2 \sigma^2 σ2,那么当 n → ∞ n \rightarrow \infty n
X 1 + X 2 + ⋯ + X n − n μ σ n \frac{X_1 + X_2 + \cdots + X_n - n \mu}{\sigma \sqrt{n}} σn X1+X2++Xnnμ的分布趋于标准正态分布,即
n → ∞ , P { X 1 + ⋯ + X n − n μ σ n ≤ a } → 1 2 π ∫ − ∞ a e − x 2 2 d x n \rightarrow \infty,P\{\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} \leq a\} \rightarrow \frac{1}{\sqrt{2\pi}}\int^a_{-\infty} e^{-\frac{x^2}{2}}dx nP{σn X1++Xnnμa}2π 1ae2x2dx

例如:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8. 随机过程

一个随机过程 { X ( t ) , t ∈ T } \{X(t), t \in T\} {X(t),tT}是随机变量的一个集合。集合T称为此过程的指标集。当T是可数集时,随机过程称为离散时间过程;当T是一个实数空间时,随机过程称为连续时间过程

随机过程的本质有两个要点:一是随机,二是过程;随机说明任何时候结果都存在不确定性,即分布函数(或者概率密度函数);过程体现的是时间;在时间t时,随机变量服从某一分布,另一时刻随机变量服从某一分布。如下图所示
在这里插入图片描述
参考资料:

  1. https://blog.csdn.net/ningyanggege/article/details/88549654
  2. 应用随机过程概率模型导论 第11版
    在这里插入图片描述
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值