用matplotlib绘制雷达图

学习在一个雷达图中导入多组数据并只调用一次plt.polar()和plt.fill():

使用plt.polar可以快速的绘制雷达图,polar()的语法格式如下:

polar(theta, r ,**kwargs)
theta:表示每个数据点所在射线与极径的夹角
r:表示每个数据点的距离

绘制雷达图

首先,先导入matplotlib模块和numpy模块。并写上让画布可以显示中文的代码。

#导入模块
import numpy as np
import matplotlib.pyplot as plt

# 设置中文
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

接下来准备大数据专业三位同学的各科目成绩

# 准备大数据专业三位同学各科目成绩
dim_num = 6
radians = np.linspace(0, 2 * np.pi, dim_num, endpoint=False)
radians = np.concatenate((radians, [radians[0]]))  

# A同学: '数学','英语','线代','爬虫','数据可视化','吃喝玩乐'  --->   41,38,36,62,68,100
score_a = np.array([41,38,36,62,68,100])
score_a = np.concatenate((score_a, [score_a[0]]))  

# B同学:'数学','英语','线代','爬虫','数据可视化','吃喝玩乐'  --->   91,88,83,72,78,26
score_b = np.array([91,88,83,72,78,26])
score_b = np.concatenate((score_b, [score_b[0]]))  

# C同学:'数学','英语','线代','爬虫','数据可视化','吃喝玩乐'  --->   81,78,85,76,74,36
score_c = np.array([81,78,85,76,74,36])
score_c = np.concatenate((score_c, [score_c[0]]))  

开始绘制雷达图

#因为没每一组数据都要闭环,所以导入每一组数据前面都要给个radians
plt.polar (radians, score_a, radians, score_b, radians, score_c)

到了这一步的效果如下:
在这里插入图片描述

做到这一步我们就剩下设置维度标签、极坐标的标签和填充多边形了,代码如下:

# 设置维度标签
radar_labels = ['数学','英语','线代','爬虫','数据可视化','吃喝玩乐']
radar_labels = np.concatenate((radar_labels, [radar_labels[0]])) # 拼接一下,构成闭环 (此处可以不拼接,为了统一而已)

# 设置极坐标的标签
angles = radians * 180/np.pi  # 弧度转角度
plt.thetagrids(angles, labels=radar_labels) # 设置新的刻度标签

# 填充多边形(只允许调用一次plt.fill)
#——————————————————————————————————————————    
plt.fill(radians, score_a, 'r', radians, score_b, 'g', radians, score_c, 'b', alpha=0.25)
#—————————————————————————————————————————— 

# .展示图表
plt.show()

最后展示出来的效果是这样的:
在这里插入图片描述
但是这个圆不是很好看,这时候我们就可以在plt.show()前面设置他的y轴数据

#y轴数据 
plt.ylim(0, 100)

最终效果如下:
在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值