学习在一个雷达图中导入多组数据并只调用一次plt.polar()和plt.fill():
使用plt.polar可以快速的绘制雷达图,polar()的语法格式如下:
polar(theta, r ,**kwargs)
theta:表示每个数据点所在射线与极径的夹角
r:表示每个数据点的距离
绘制雷达图
首先,先导入matplotlib模块和numpy模块。并写上让画布可以显示中文的代码。
#导入模块
import numpy as np
import matplotlib.pyplot as plt
# 设置中文
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
接下来准备大数据专业三位同学的各科目成绩
# 准备大数据专业三位同学各科目成绩
dim_num = 6
radians = np.linspace(0, 2 * np.pi, dim_num, endpoint=False)
radians = np.concatenate((radians, [radians[0]]))
# A同学: '数学','英语','线代','爬虫','数据可视化','吃喝玩乐' ---> 41,38,36,62,68,100
score_a = np.array([41,38,36,62,68,100])
score_a = np.concatenate((score_a, [score_a[0]]))
# B同学:'数学','英语','线代','爬虫','数据可视化','吃喝玩乐' ---> 91,88,83,72,78,26
score_b = np.array([91,88,83,72,78,26])
score_b = np.concatenate((score_b, [score_b[0]]))
# C同学:'数学','英语','线代','爬虫','数据可视化','吃喝玩乐' ---> 81,78,85,76,74,36
score_c = np.array([81,78,85,76,74,36])
score_c = np.concatenate((score_c, [score_c[0]]))
开始绘制雷达图
#因为没每一组数据都要闭环,所以导入每一组数据前面都要给个radians
plt.polar (radians, score_a, radians, score_b, radians, score_c)
到了这一步的效果如下:
做到这一步我们就剩下设置维度标签、极坐标的标签和填充多边形了,代码如下:
# 设置维度标签
radar_labels = ['数学','英语','线代','爬虫','数据可视化','吃喝玩乐']
radar_labels = np.concatenate((radar_labels, [radar_labels[0]])) # 拼接一下,构成闭环 (此处可以不拼接,为了统一而已)
# 设置极坐标的标签
angles = radians * 180/np.pi # 弧度转角度
plt.thetagrids(angles, labels=radar_labels) # 设置新的刻度标签
# 填充多边形(只允许调用一次plt.fill)
#——————————————————————————————————————————
plt.fill(radians, score_a, 'r', radians, score_b, 'g', radians, score_c, 'b', alpha=0.25)
#——————————————————————————————————————————
# .展示图表
plt.show()
最后展示出来的效果是这样的:
但是这个圆不是很好看,这时候我们就可以在plt.show()前面设置他的y轴数据
#y轴数据
plt.ylim(0, 100)
最终效果如下: