机器学习是一门涉及数据分析和模式识别的领域,它的目标是通过构建和训练模型来使计算机系统自动学习和改进性能。在机器学习中,有许多重要的术语和概念,本文将详细解析其中的一些关键术语,并提供相应的源代码示例。
- 数据集 (Dataset)
数据集是机器学习中用于训练和评估模型的数据集合。数据集包含一组样本,每个样本由输入特征和对应的目标值(也称为标签)组成。通常,数据集被划分为训练集和测试集,用于模型的训练和评估。
在Python中,可以使用许多库加载和处理数据集,如NumPy和Pandas。下面是一个使用Pandas加载CSV文件的示例代码:
import pandas as pd
# 从CSV文件加载数据集
dataset = pd.read_csv('dataset.csv'