自动驾驶技术的发展离不开深度学习模型的应用。深度学习模型通过对大量的数据进行训练和学习,能够从图像、传感器数据等输入中提取有用的特征,并作出准确的决策。本文将介绍自动驾驶中常用的深度学习模型,并提供相应的源代码示例。
- 卷积神经网络(Convolutional Neural Networks,CNN)
卷积神经网络是一种广泛应用于计算机视觉领域的深度学习模型。在自动驾驶中,CNN常用于图像识别和目标检测任务。它通过多层卷积和池化操作,能够有效地提取图像中的特征,并进行分类或定位。
以下是一个简单的CNN模型的示例代码:
import tensorflow as tf
model = tf.keras.Sequential([
tf.keras