Pytorch训练总结

这篇博客介绍了PyTorch中数据加载的注意事项,包括图片格式的一致性和数据预处理。同时,讲解了模型的初始化、微调以及模型结构的构建,特别是模型参数初始化和前向传播过程。此外,还详细阐述了训练过程,包括损失计算、反向传播、优化器设置以及模型保存。最后,讨论了模型预测时的模型加载、关闭梯度监控等关键步骤。
摘要由CSDN通过智能技术生成

Pytorch中有许多需要注意的地方,这里总结一下

1、数据加载

1、要保证输出图片的格式是一致的

train_data=CustomDataset(file_list,transform=transforms.Compose([
                                               transforms.Resize(512),# 要保证数据输入大小一致
                                               transforms.RandomCrop(224),
                                               transforms.ToTensor()]))
data_loader = DataLoader(train_data, batch_size=2,shuffle=True)
print(len(data_loader))
print(data_loader)
for data,lable in data_loader: # 循环输出
    print(data, lable)

2、对于每个图片的处理

class CustomDataset(Dataset):#需要继承data.Dataset
    def __init__(self,file_list_dir,transform= None):
        # TODO
        # 1. Initialize file path or list of file names.
        # self.image_dir = '/root/data/history/angle'
        self.image_file_lists = file_list_dir
        self.len = len(self.image_file_lists)
        self.transform = transform
        

        
    def __getitem__(self, index):
        # TODO
        # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
        # 2. Preprocess the data (e.g. torchvision.Transform).
        # 3. Return a data pair (e.g. image and label).
        #这里需要注意的是,第一步:read one data,是一个data
        index = index % self.len
        image_file = self.image_file_lists[index] 
        # print(image_file)
        image ,label = process_img(image_file) # 主要是读图片和label
        image = self.transform(image) # 这里就用到了前面的统一处理transform 
        return image,label
         
    def __len__(self):
        # You should change 0 to the total size of your dataset.
        return len(self.image_file_lists)

2、关于模型Model

1、模型参数初始化
这个就是初步的参数设置,一般来说是通用的

   def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()

2、fineturn与训练模型
主要是输出分类不同,需要调整最后一个全连接层

def mobilenet_v2(pretrained=True):
    model = MobileNetV2(input_size=320,width_mult=1)
    state_dict = torch.load("mobilenetv2_1.0_f2a8633.pth")
    model.load_state_dict(state_dict,strict=False)
    model.classifier = nn.Linear(1280,4) # 4替换原来的1000

3、模型features的处理

   self.features = [conv_bn(3, input_channel, 2)] # 先定义为数组list
  #....
  # building last several layers
    self.features.append(conv_1x1_bn(input_channel, self.last_channel))
  # make it nn.Sequential
    self.features = nn.Sequential(*self.features) # 数组解包再组成为Sequential

4、推理forward
这个就是处理计算逻辑的,后面实例化的时候,括号里面的处理方法

   def forward(self, x):
        x = self.features(x) #[8, 1280, 7, 7]
        x = x.mean(3).mean(2) #avgpooling # [8, 1280]
        x = self.classifier(x) #[8, 4]
        return x

3关于训练train

1、定义好全局变量

writer = SummaryWriter('./logs/')  # 写日志专用
# 定义训练数据
train_data_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
val_data_loader = DataLoader(
    val_data, batch_size=BATCH_TEST_SIZE, shuffle=True)

use_gpu = torch.cuda.is_available()  # 是否启用GPU

model = mobilnet_v2.mobilenet_v2(True) # 定义model

# Optimizer and criterion 定义优化器和loss
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# optimizer = torch.optim.Adam(model.parameters(),lr=0.001)

# 定义是否使用多卡训练,这个是最简便的,还有高效的distributed,但是比较麻烦点 
if torch.cuda.device_count() > 1: 
    print("Let's use", torch.cuda.device_count(), "GPUs!")
    # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
    model = nn.DataParallel(model) # 多卡训练
if use_gpu:
    modle = model.cuda()  # 将模型转到GPU上

2、开始训练
训练时需要注意主要的数据转GPU上、梯度清零、推理后反向传播、优化器修改参数、准确率计算、日志记录、模型存储等

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)
    model.train()  # 这里是训练是的model,dropout、batch_normliazition
    train_loss = 0.0
    correct = 0.
    for batch_idx, data in enumerate(train_data_loader):
        try:
            imgs, angle = data
            if use_gpu:
                imgs, angle = imgs.cuda(), angle.cuda()  # 将数据转到GPU上

            optimizer.zero_grad()  # 清空梯度
            output = model(imgs)  # 预测结果

            pred = output.data.max(1)[1]
            # 预测准确个数,先取data,然后转到cpu上,然后相加
            correct += pred.eq(angle.data).cpu().sum()  

            loss = criterion(output, angle)
            loss.backward() # 反向传播
            optimizer.step() # 优化器优化参数
            if (batch_idx+1) % 100 == 0:
                print(f'this is {str(batch_idx+1)}batch, and loss is {loss.item()}')
            total_step += 1  # 总步数加一
            if (batch_idx+1) % 1000 == 0:
                acc = correct/((batch_idx+1)*BATCH_SIZE)
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Acc: {:.4f}'
                    .format(epoch+1, num_epochs, batch_idx+1, len(train_data_loader), loss.item(), acc))
                writer.add_scalar('Loss/test', loss, total_step)  # 开始记录准确率等
                writer.add_scalar('ACC', acc, total_step)
        except Exception as e:
            print(e)

    torch.save(model.state_dict(), f'./save_mode_dir/{str(epoch)}.pth')  # 存储模型 ,当然最好是model.model.state_dict(),这样便于后面的单卡推理
    test_acc(model, epoch, criterion, val_data_loader)  # 进行准确率测试

4、关于预测图片val

1、关于预测也要注意一下模型的载入、预测、关闭梯度监控等

# for data,angle in data_loader:
#     print(data, angle)

model = mobilnet_v2.mobilenet_v2(True)
#下面model由于是多卡训练的,每个keys都多了model.model,而不是model.所以要多卡方式加载
model = torch.nn.parallel.DataParallel(model, device_ids = [0]) 

# checkpoint = torch.load('./save_mode_dir/9.pth') 
 #modelpath是你要加载训练好的模型文件地址
# model.load_state_dict(checkpoint['state_dict'])
# output = model(x)
use_gpu = torch.cuda.is_available()  # 是否启用GPU

model.load_state_dict(torch.load('./save_mode_dir/9.pth'))
model.eval()  # 模型的推理模式,主要解决dropout、batch normalization等问题
correct = 0.
with torch.no_grad(): # 这个是为了不跟踪梯度,因为预测不需要,节省空间
    for batch_idx, data in enumerate(val_data_loader):
        imgs, angle = data
        if use_gpu:
            imgs, angle = imgs.cuda(), angle.cuda()  # 将数据转到GPU上
        output = model(imgs)  # 预测结果
        # get the index of the max log-probability
        pred = output.data.max(1)[1]
        correct += pred.eq(angle.data).cpu().sum()
# loss function already averages over batch size
acc = correct / len(val_data_loader.dataset)
print('\nAccuracy: {}/{} ({:.0f}%)\n'.format(
     correct, len(val_data_loader.dataset), 100. * acc))

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在训练LSTM时出现结果全为NaN的问题通常是由于训练过程中出现了梯度爆炸或梯度消失的情况。 首先,梯度爆炸可能是由于网络层数较深,导致反向传播时梯度值呈指数级增长。解决这个问题的方法包括:使用梯度裁剪,即设置一个阈值,当梯度超过该阈值时进行裁剪;缩小学习率,降低梯度的更新幅度;权重正则化等方法。 其次,梯度消失可能是由于网络层数较深,反向传播时梯度值太小,使得权重更新几乎没有发生。解决这个问题的方法包括:初始化权重时使用较小的随机数,使得梯度不容易消失;使用ReLU、LSTM等激活函数,可以缓解梯度消失问题;使用Batch Normalization进行归一化等。 此外,还可以对输入数据进行预处理,包括归一化、标准化等,减少数据的变化范围,有助于提高网络的稳定性。 同时,监控损失函数的变化情况,如果损失函数在训练过程中出现不稳定或发散的情况,也可能导致结果为NaN。在这种情况下,可以考虑调整损失函数的权重或改变网络结构,以提高训练的稳定性。 总之,解决LSTM训练过程中结果全为NaN的问题需要综合考虑网络结构、权重初始化、梯度裁剪、学习率等因素,并根据具体情况采取相应的调整策略,以确保训练的稳定性和结果的有效性。 ### 回答2: 当在PyTorch训练LSTM模型时,结果全为NaN(Not a Number),通常是由于以下几个原因导致的。 1. 数据预处理问题:在训练LSTM模型之前,需要对数据进行预处理。检查是否有缺失数据或异常值。如果输入数据包含NaN值,LSTM模型将会返回NaN作为结果。确保数据集中不含NaN值,并对数据进行适当的归一化或标准化。 2. 学习率过高:使用的学习率可能过高,导致训练过程中发生梯度爆炸或梯度消失的情况。尝试减小学习率,可以通过调整优化器的参数来实现,如减小学习率衰减系数或使用较小的固定学习率。 3. 梯度裁剪不足:LSTM模型中存在梯度爆炸的问题,可以尝试增加梯度裁剪的阈值。通过限制梯度值的大小,可以防止梯度爆炸的问题。 4. 网络结构问题:LSTM模型的网络结构可能存在问题。检查网络结构的参数设置,例如隐藏层的大小,网络深度等。过大或过小的网络结构可能导致训练不稳定或结果出现NaN。 5. 默认参数问题:检查训练过程中使用的其他参数设置。例如,优化器的选择,损失函数的选择,迭代次数等。尝试更换不同的优化器和损失函数,适当调整迭代次数。 总结来说,当LSTM模型训练过程中出现结果全为NaN时,需要仔细检查数据预处理、学习率、梯度裁剪、网络结构和默认参数等方面的问题,并进行相应的调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值