CIFAR数据集
CIFAR10 dataset是一个是个类别的数据集,类别包括:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. 里面的每张图像大小为3 * 32 * 32。
Pytorch为视觉任务特地创建了一个Torchvision, 里面包括一些常用数据集的加载Imagenet,CIFAR10,MINIST,etc
Jupyter代码如下
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
加载数据
# torchvision dataset的输出是PILImage range[0,1] 我们需要把它进行归一化处理 normalized range[-1,1]
transform = transforms.Compose( # transform.Compose 将多个transform组合起来用
[transforms.ToTensor(), # 把一个取值范围内是[0,255]的Image或shape为(H,W,C)的ndarray转换为(C,H,W)取值为[0,1.]的FloadTensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] # 给定RGB的均值、方差,将会把Tensor正则化 (img-mean)/std
)
# 这个API中 train表示是否为训练集 download表示是否将文件下载到./data目录下 若已经成功下载则无操作
# transform表示原始图片作为输入返回一个转换后的图片
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
# 数据加载器,组合数据集和采样器,并在数据集上提供单进程或者多进程迭代器 num_workers = 0 表示只在主进程中加载
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 展示一下图像
def imshow(img):
img = img/2 + 0.5 # 为了可视化反向正则化
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
dataiter = iter(trainloader) # 创建迭代器对象
images, labels = dataiter.next()
# show image
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
定义模型
# Define the Neural Network
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
h1 = self.pool(F.relu(self.conv1(x)))
h2 = self.pool(F.relu(self.conv2(h1)))
h2 = h2.view(-1, 16*5*5)
h3 = self.fc1(h2)
h4 = self.fc2(h3)
h5 = self.fc3(h4)
return h5
# 初始化
net = Net()
# 定义Loss Function 和 Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
训练网络并保存模型
# Train the Network
for epoch in range(2):
running_loss = 0.
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inps, labels = data
# zero the parameter gradient
optimizer.zero_grad()
# forward + backward + optimize
outs = net(inps)
loss = criterion(outs, labels)
loss.backward()
optimizer.step()
# print loss
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss/2000))
running_loss = 0.
print('Finish Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
加载模型并测试结果
# Test the Network on the test data
dataiter = iter(testloader)
images, labels = dataiter.next()
# load the model
net = Net()
net.load_state_dict(torch.load(PATH))
out = net(images)
print(out.size())
_, prediction = torch.max(out, 1) # 1表示返回元素在一行中最大的值和列索引
imshow(torchvision.utils.make_grid(images))
print('The prediction of the model is',' '.join('%5s' % classes[prediction[j]] for j in range(4)))
评估结果
# 评估结果1
correct = 0.
total = 0.
with torch.no_grad(): # 不需要计算梯度
for data in testloader:
images, labels = data
out = net(images)
_,prediction = torch.max(out, 1)
total += labels.size(0)
correct += (prediction == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct/total))
# 评估结果2
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
out = net(images)
_,prediction = torch.max(out, 1)
c = (prediction == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %.2f %%' % (classes[i], class_correct[i]/class_total[i]))