机器学习助力轻量级密码的差分区分器研究
1. 混合整数线性规划(MILP)在密码分析中的应用
在密码分析领域,混合整数线性规划(MILP)是一种重要的工具。我们先来看一个MILP的优化问题:
Minimize d
Subject to
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
x0 + x1 - 2d ≥ 0
d - x0 ≥ 0
d - x1 ≥ 0
d - y ≥ 0
x0, x1, y, d are binary
这里会过滤掉像((x0, x1, y, d) = (1, 1, 1, 1))或((1, 1, 0, 1))这样的无效情况。值得注意的是,像Gurobi这样的现代MILP求解器实际上可以直接处理异或(XOR)子句作为约束条件,但在文献中,这种特性在差分或线性边界的任何公式化中都未被使用。
1.1 GIFT - 128的1轮差分边界的MILP模型示例
以GIFT - 128的1轮差分边界的MILP实例为例,其LP格式(一种人类可读的表达MILP实例的格式)的缩写(部分注释)版本如下:
- 未缩写的LP文件包含3297个线性约束和3520个二进制变量(即每个S盒有110个变量)。
- 在缩写版本中,仅显示了第0个S盒对应的约束(第14 - 118行,共103个约束)。在未缩写版本中,其余31个S盒会重复类似模式(总计3296个约束)。
- 额外的约束(第10行)来自初始非零输入差异。
- 目标函数在第4行给出。
- 线性层没有约束(第122行提到),这些约束从第2轮开始出现。
- 第126行标记所有变
超级会员免费看
订阅专栏 解锁全文
699

被折叠的 条评论
为什么被折叠?



