基于深度学习的AND - RX分组密码旋转异或区分器研究
1 引言
在现代通信系统中,密码学对于保障信息的安全和隐私起着至关重要的作用。分组密码被广泛应用于数据传输的加密过程,确保内容的机密性,防止未经授权的访问。然而,分组密码的有效性不断受到挑战,研究人员持续探索新方法来增强其对差分、线性、代数等攻击的抵御能力。在众多密码分析技术中,旋转异或(RX)密码分析已成为评估分组密码安全性的有力手段,尤其适用于ARX和AND - RX密码,如Speck、Simon和Simeck。
近年来,人工智能(AI)和深度学习在包括密码分析在内的多个领域展现出巨大潜力。它们分析大型数据集中复杂模式和关系的能力,促使研究人员探索破解加密算法的新技术。本文旨在研究深度学习在AND - RX分组密码(重点是Simon和Simeck)的RX密码分析中的应用,并提出一种评估这些密码中扩散层影响的方法。
传统的RX密码分析技术通常依赖于弱密钥模型,利用统计方法检测区分器和潜在漏洞。但这些方法存在局限性,在有限的弱密钥模型下可能难以实现良好的区分效果。因此,深度学习被提出作为一种替代技术,有望在密码分析任务中取得更好的结果。本文提出的方法使我们能够为Simeck和Simon密码的全密钥类获取区分器。
除了评估密码的安全性,为扩散层找到最佳参数也是密码设计的关键环节。扩散层能确保明文或密钥输入的微小变化导致密文输出的显著改变,增加攻击者破解原始数据的难度。本文提出一种新方法,使用改进的优化器确定最佳的RX差分输入和最优移位参数,借助深度学习分类器找到最长轮次的区分器。此外,利用该优化器为Simeck类密码确定扩散层中对抗深度学习优化器的最佳旋转集,增强密码的整体安全性。
本
超级会员免费看
订阅专栏 解锁全文
3611

被折叠的 条评论
为什么被折叠?



