摘要:在本博客中,我们深入探讨了基于YOLOv8/v7/v6/v5的跌倒检测系统。核心技术采用YOLOv8,并整合了YOLOv7、YOLOv6、YOLOv5算法,以进行性能指标对比。文章详细介绍了国内外的研究现状、数据集处理方法、算法原理、模型构建与训练代码,以及基于Streamlit的交互式Web应用界面设计。在这个Web应用中,用户可以通过上传图片、视频文件或直接利用实时摄像头,来进行跌倒检测。此外,系统支持上传不同版本的训练模型(YOLOv8/v7/v6/v5)以进行推理预测,提供了灵活的界面修改选项。本文还附带了完整的网页设计、深度学习模型代码和训练数据集的下载链接,以便读者能够更加深入地了解和应用这些技术。通过对不同版本的YOLO算法进行集成和对比,我们旨在为读者提供一个全面、高效的跌倒检测解决方案,既适用于学术研究,也适用于实际应用场景,如老人护理、公共安全监控等。
文章目录
网页版-基于深度学习的跌倒检测系统(YOLOv8/v7/v6/v5+实现代码+训练数据集)
1. 网页功能与效果
(1)开启摄像头实时检测:本系统允许用户通过网页直接开启摄像头,实现对实时视频流中跌倒的检测。系统将自动识别并分析画面中的跌倒,并将检测结果实时显示在用户界面上,为用户提供即时的反馈。
(2)选择图片检测:用户可以上传本地的图片文件到系统中进行跌倒检测。系统会分析上传的图片,识别出图片中的跌倒,并在界面上展示带有跌倒标签和置信度的检测结果,让用户能够清晰地了解到每个跌倒状态。
(3)选择视频文件检测:系统支持用户上传视频文件进行跌倒检测。上传的视频将被系统逐帧分析,以识别和标记视频中每一帧的跌倒。用户可以观看带有跌倒检测标记的视频,了解视频中跌倒的变化。
(4)选择不同训练好的模型文件:系统集成了多个版本的YOLO模型(如YOLOv8/v7/v6/v5),用户可以根据自己的需求选择不同的模型进行跌倒检测。这一功能使得用户能够灵活地比较不同模型的表现,以选择最适合当前任务的模型。
在我们的系统中,网页功能与效果展示是一个关键组成部分,它提供了一系列直观、易用的功能,以满足用户对跌倒检测的不同需求。首先,系统支持开启摄像头实时检测,允许用户通过即时视频流进行跌倒行为的监测。此外,用户可以选择图片检测和选择视频文件检测功能,通过上传预先拍摄的图片或视频文件来进行分析。为了适应不同的检测场景,我们提供了选择不同训练好的模型文件功能,让用户可以根据自己的需求选择最合适的模型进行预测。
系统设计了灵活的显示选项,用户可以选择检测画面和原始画面同时或单独显示,并通过可点击的下拉框单独标记特定目标并显示结果,这样的设计提高了界面的互动性和定制性。检测结果会在页面的表格中显示,方便用户直观地看到每一次检测的具体信息。此外,我们还考虑到了专业用户的需求,允许他们动态调整检测算法的置信度阈值和IOU阈值,以达到最佳的检测效果。
为了便于数据的记录和分析,用户可以通过点击按钮,将检测的表格结果输出到csv文件。同时,为了更好地保存和分享检测结果,我们的系统支持将标记过的图片、视频、摄像头画面结果导出为avi图像文件,这一功能大大增加了系统的实用性。
通过集成这些功能,我们的系统不仅提供了强大的跌倒检测能力,还通过友好的用户界面和灵活的操作选项,确保了用户能够根据自己的需要轻松使用系统,从而在实际应用中发挥出最大的价值。
2. 绪论
2.1 研究背景及意义
在当今社会,随着人口老龄化趋势的加剧,老年人安全已经成为全球关注的焦点。其中,跌倒事件是导致老年人受伤甚至死亡的主要原因之一,这不仅影响到个人和家庭,也给社会医疗系统带来了重大压力。因此,有效的跌倒检测和预防机制对于改善老年人的生活质量,减少医疗资源的压力具有重要意义。
随着技术的发展,基于计算机视觉和深度学习的跌倒检测方法已经成为研究的热点。这类方法通过分析视频流中的人体姿态和运动模式,实时检测跌倒事件,相较于传统的穿戴式设备,这种方法更加方便和自然,避免了侵入性和佩戴不便的问题。
YOLO(You Only Look Once)系列算法因其高效的处理速度和良好的检测准确率,在实时目标检测领域,尤其是在跌倒检测方面,显示出了巨大潜力。从YOLOv5到YOLOv81,每个版本的更新都在不断优化模型的性能,提高检测的准确性和速度。最新的研究表明,通过对这些模型的进一步优化和调整,可以有效提升在复杂场景下的跌倒检测能力23。
跌倒检测技术的发展对于提高老年人的生活质量和安全具有深远的意义。通过不断的技术创新和研究,我们有望在不久的将来,见证更加准确、智能和用户友好的跌倒检测系统的出现。
2.2 国内外研究现状
在跌倒检测的研究领域,随着深度学习技术的快速发展,许多新的算法和技术被提出以提高跌倒检测的准确性和实时性。近年来,基于深度学习的跌倒检测研究主要集中在优化算法性能和提高检测系统的实用性上。尤其是YOLO(You Only Look Once)系列算法,在实时目标检测领域的成功应用,为跌倒检测技术的进步提供了新的动力和可能。
在算法方面,除了YOLO系列之外,还有其他算法如Faster R-CNN、SSD以及基于人工智能的Pose Estimation技术,这些技术也在跌倒检测方面显示出了潜力。比如,Faster R-CNN以其高精度识别特征,被广泛应用于需要精确物体检测的场景中,虽然其处理速度不如YOLO系列快,但在某些应用场景下,其精度的优势可能更为重要4。同时,SSD算法以其平衡了速度和准确性的特点,在实时跌倒检测方面也有所应用5。
数据集的发展也是近年来跌倒检测研究的一个重点。早期的数据集多集中在单一环境、少量主体的简单跌倒动作上,这大大限制了模型的泛化能力和实用性。近年来,为了提高模型的泛化能力,新的数据集开始包含更多样化的环境、不同体型和年龄段的人物以及各种复杂的跌倒和非跌倒行为。例如,公开的多视角跌倒(Multi-angle Fall)数据集,提供了从多个角度捕捉的跌倒视频,这有助于训练出能够在多种视角下有效工作的模型。
对比传统与最新的情况,显而易见的是,最新的研究更加注重于实时性能、准确性以及在复杂场景下的鲁棒性。此外,现代研究通过引入人工智能技术,比如深度学习和神经网络,相较于传统基于阈值和机器学习的方法,能够提供更高的准确率和更好的泛化能力。
近期,基于Transformer的模型由于其在处理序列数据方面的优势,开始被应用于跌倒检测领域。例如,一项研究利用Vision Transformer(ViT)来分析视频帧,通过自注意力机制捕捉帧间的关系,有效提高了在复杂背景下的跌倒检测准确率。这项研究的创新点在于将Transformer应用于视频理解任务中,充分利用了其在捕获长距离依赖方面的能力,显著提高了模型对于跌倒事件的识别性能。
然而,尽管有显著的进步,跌倒检测技术仍面临着一系列挑战,例如在复杂环境中的检测准确性、跨场景泛化能力、处理速度与准确性之间的平衡、以及对于隐私的保护等。此外,如何有效地将这些技术集成到可穿戴设备或家庭自动化系统中,也是当前研究的一个重点。
未来的发展趋势可能会集中在以下几个方面:首先,通过改进算法和模型架构,进一步提升检测的准确性和实时性;其次,开发更加多样化和复杂的数据集,以提高模型的泛化能力;再次,探索新的数据融合方法和多模态检测技术,以提高在复杂环境下的检测性能;最后,加强对用户隐私保护的考虑,开发更安全、更可靠的跌倒检测系统。
2.3 要解决的问题及其方案
2.3.1 要解决的问题
针对基于YOLOv8/v7/v6/v5的跌倒检测系统,我们面临的主要问题和挑战可以从以下几个方面详细阐述:
-
跌倒检测的准确性和速度
跌倒检测系统的核心挑战是如何在多变的环境下实现对跌倒行为的高准确度识别与实时处理。跌倒行为在视觉上可能表现出细微的差异,受到遮挡、光照条件、背景复杂度等因素的影响。此外,考虑到实时监控的需求,系统需要快速处理视频流,实现即时反馈,这就要求模型既要有很高的准确率也要有很快的处理速度。 -
环境适应性和模型泛化能力
跌倒事件可能发生在室内外各种不同的环境条件下,如不同的光照条件、多样的背景以及各种天气状况等。这要求跌倒检测系统必须具备出色的环境适应性和模型泛化能力,确保在多样化的环境条件下都能维持较高的识别准确率。 -
用户交互界面的直观性和功能性
为了使得跌倒检测系统易于被广泛应用,系统的用户界面设计必须直观易用。用户应能轻松上传视频、实时查看监控画面、快速切换不同的模型进行检测等,同时界面的美观性也不容忽视,这对于提升用户体验至关重要。 -
数据处理能力和存储效率
跌倒检测系统将处理大量的视频数据,这就要求系统拥有强大的数据处理能力和高效的数据存储机制。此外,为了满足长期监控的需求,系统还需要有效地管理和查询历史数据,同时确保数据的安全性和隐私保护。 -
系统的可扩展性和维护性
为了适应未来可能的技术升级或功能扩展需求,系统的设计应充分考虑到可扩展性和维护性。这包括易于集成新的检测模型、添加新的用户功能以及便于系统维护和更新等方面。
通过对上述问题的深入分析,我们可以进一步针对这些挑战设计和优化基于YOLO系列模型的跌倒检测系统,使之不仅能够高效准确地完成跌倒行为的检测任务,而且还能提供良好的用户体验,满足不同环境下的实时监控需求。
2.3.2 解决方案
针对基于YOLOv8/v7/v6/v5的跌倒检测系统所面临的挑战,我们将采取以下方法来设计和实现解决方案:
- 深度学习模型的选择和优化
- 模型架构:选择YOLO系列模型作为核心的深度学习模型,具体采用最新的YOLOv8以及前几代YOLOv7、v6、v5进行综合评估。YOLO系列以其高速度和高准确度的特点著称,在实时跌倒检测任务中表现优异。通过对比这些版本在跌倒检测任务上的表现,选取或结合最优模型方案。
- 数据增强:为增强模型的泛化能力,将采用多种数据增强技术,包括但不限于随机裁剪、旋转、色彩调整等,以模拟跌倒发生的各种环境条件。
- 迁移学习:利用在大规模数据集上预训练的模型作为起点,通过迁移学习对特定的跌倒检测数据集进行微调,这样既加快了模型训练速度,也提高了识别性能。
- 技术框架和开发工具
- PyTorch框架:选用PyTorch作为深度学习的主要框架,其提供的灵活编程环境和高效的GPU加速支持,适合进行快速的模型开发和迭代。
- Streamlit网页设计:采用Streamlit框架快速开发交互式网页应用,使得用户可以方便地进行图片、视频上传和实时摄像头的跌倒检测,同时支持切换不同的模型文件,满足不同检测需求。
- CSS美化:使用CSS对网页应用进行风格定制和美化,以提供更佳的用户体验。
- 开发工具IDE:使用PyCharm作为主要的开发环境,其强大的代码管理、调试功能和插件支持,有助于提高开发效率。
- 功能实现和系统设计
- 多输入源支持:系统设计将支持多种输入源,包括静态图片、视频文件以及实时摄像头输入,以适应不同场景下的跌倒检测需求。
- 模型切换功能:实现用户界面中的动态模型切换功能,让用户可以根据需要选择不同版本的YOLO模型进行检测,增强系统的适用性和灵活性。
- 交互界面设计:基于Streamlit和CSS设计直观、美观的用户交互界面,使用户可以轻松进行操作,如上传检测材料、查看检测结果等。
- 数据处理和存储策略
- 高效数据处理:利用PyTorch提供的数据处理工具和机制,实现高效的视频流和图像的加载、预处理,确保了检测任务的实时性。
- 智能数据存储:设计一种高效的数据存储方案,对检测结果和历史数据进行有效管理,便于用户进行历史数据查询和分析。
- 性能优化和系统测试
- 性能调优:定期对系统性能进行评估和优化,包括模型压缩、优化计算流程等措施,确保在保持高准确率的同时,也能满足实时处理的需求。
- 全面系统测试:在系统开发过程中,进行全面的测试,包括功能测试、性能测试和用户体验测试,以确保系统的稳定性和可靠性。
2.4 博文贡献与组织结构
本文综合探讨了基于YOLO系列模型(YOLOv8/v7/v6/v5)的跌倒检测系统的开发与实现,涵盖了从文献综述、数据集处理到模型选择、网页设计,以及系统实现的全面介绍。以下是本研究的主要贡献:
-
任务相关文献综述:本文提供了一份全面的文献综述,详细分析了当前跌倒检测领域的研究现状和进展,为后续研究提供了坚实的理论基础。
-
数据集的处理:详细介绍了如何处理和增强用于训练跌倒检测模型的数据集,包括数据清洗、增强技术的应用等,旨在提高模型训练的效率和效果。
-
算法选择:深入探讨了YOLOv8/v7/v6/v5等不同版本的YOLO算法在跌倒检测任务上的应用,包括各版本特点、优缺点的比较分析,为选择最适合的模型提供了依据。
-
采用Streamlit设计的网页:介绍了如何利用Streamlit框架设计一个美观友好的网页界面,使得用户可以方便地进行跌倒检测任务的上传、处理和结果展示。
-
算法效果对比:通过实验对比了YOLOv7/v6/v5等算法在跌倒检测任务上的性能,包括准确率、处理速度等,为实际应用中的算法选择提供了数据支持。
-
资源共享:分享了完整的数据集和代码资源包,包括预处理数据、训练与测试代码等,为研究人员和开发者复现结果和进一步研究提供了便利。
后续章节的组织结构如下: 绪论:介绍研究背景、目的和本文的主要贡献;算法原理:详细介绍YOLOv8/v7/v6/v5等算法的工作原理及其在跌倒检测中的应用;数据集处理:讨论使用的数据集及其预处理、增强方法。代码介绍:提供模型训练和预测的详细代码说明,包括环境搭建、参数配置和执行步骤。实验结果与分析:展示不同模型在跌倒检测任务上的实验结果,并进行比较分析。系统设计与实现:介绍基于Streamlit的跌倒检测系统的设计与实现细节。结论与未来工作:总结本文的研究成果,并讨论未来的研究方向和潜在的改进空间。
3. 数据集处理
在跌倒检测领域,一个高质量的数据集是研究和开发有效算法的关键。本文使用的数据集,经过精心设计和构建,旨在提供一个综合的基础,用于训练和验证基于YOLO系列模型的跌倒检测系统。数据集包含10,787张图像,其中9,438张用于训练,899张用于验证,以及450张用于测试。这样的分配策略确保了足够的样本量以避免过拟合,同时保留了合适数量的样本进行模型验证和性能测试,这是构建一个健壮的检测系统的重要步骤。博主使用的类别如下:
Chinese_name = {'Fall-Detected': "跌倒"}
数据集中的图像来源多样,涵盖了从室内到室外的各种环境,从个体到群体的各种场景,这样的多样性能够使得训练出的模型在实际应用中具有更好的泛化能力。每张图像都被细致地标注,标注不仅包括跌倒个体的位置,而且包括了与跌倒相关的重要视觉特征,如人体姿态和周围环境。这种详细的标注为训练深度学习模型提供了大量的上下文信息,有助于提升模型对于复杂情况下跌倒事件的识别能力。
为了进一步增强模型的性能和鲁棒性,本研究对数据集执行了一系列的预处理和增强处理步骤。图像自动方向校正确保了数据输入的一致性;所有图像被统一调整到416x416像素的尺寸,这样的标准化处理对于后续的模型训练至关重要。此外,通过实施水平翻转、随机旋转、曝光调整、高斯模糊,以及对特定比例的像素应用椒盐噪声等增强技术,我们模拟了实际环境中可能出现的多种变化。这些增强技术的引入显著提升了数据集的多样性和复杂性,使得训练出的模型能够适应现实世界中的多变条件。
通过分析数据集的分布,我们得到了有关跌倒检测标注特征的有价值的见解。大多数跌倒事件的标注集中在图像的中心区域,这暗示了中心区域对于跌倒检测模型的特殊重要性。边界框的尺寸分布表明了模型需要能够检测到不同尺度的跌倒事件,从小尺寸(远处或部分身体跌倒)到大尺寸(近处或完整身体跌倒)。这些分析结果为我们后续的模型设计和训练策略提供了重要的指导。
总之,本研究的数据集通过它的多样性、精确的标注和综合的增强处理,为开发出能够准确识别跌倒事件的高效算法奠定了坚实的基础。通过对这个数据集的深入分析和利用,我们期待能够显著提高跌倒检测系统的性能,并最终在现实世界中有效地预防和响应跌倒事件。
4. 原理与代码介绍
4.1 YOLOv8算法原理
YOLOv8算法是目标检测领域的最新突破,继承并优化了其前代YOLO系列算法的架构。YOLOv8的核心原理在于其能够以极高的速度和精度执行图像中的目标检测任务。下面,我们将详细解读YOLOv8的关键技术和架构特点。
YOLOv8采用了精心设计的深度神经网络,其结构包括多个关键的模块:Backbone(主干网络)、Neck(颈部网络)和Head(头部网络)。Backbone负责从输入图像中提取特征,Neck用于特征融合和优化,而Head则是直接进行目标检测。
在Backbone部分,YOLOv8继承了YOLO系列特有的CSP(Cross Stage Partial)结构,这是一种创新的设计,通过分离特征图并在网络的不同阶段进行合并,以减少计算量并保持性能。CSP结构能够减轻网络负担,提高特征提取的效率。同时,YOLOv8在此基础上融入了SPP(Spatial Pyramid Pooling)模块,进一步提升了特征的尺度不变性和感受野范围。
YOLOv8算法的特征提取非常强大,它使用了SLU(Sigmoid Linear Unit)作为激活函数,以替代传统的ReLU函数。SLU通过结合Sigmoid和线性单元的特点,提高了梯度流动和网络的非线性表示能力。这种激活函数有助于网络学习更加复杂的特征,同时避免了ReLU在面对负输入值时的“死亡ReLU”问题。
在特征融合方面,YOLOv8引入了CSP bottleneck结构,它使用两个卷积层快速提取特征,并在CSP模块中进行融合。通过CSP的设计,YOLOv8实现了特征的跨阶段融合,提高了特征的利用率,并且有效减少了参数量和计算复杂度。
在目标检测阶段,YOLOv8保留了YOLO系列的anchor-based策略。头部网络(Head)采用了多尺度检测策略,通过在不同分辨率的特征图上检测目标,YOLOv8能够同时识别小目标和大目标。通过这种多尺度检测,算法能够适应目标在图像中的不同尺寸。
YOLOv8在算法优化方面也做出了显著的进步。例如,算法内部采用了BN(Batch Normalization)和CIoU(Complete Intersection over Union)损失函数,这些技术都是为了提高模型训练的稳定性和检测的准确性。BN通过标准化特征图来加速学习过程,而CIoU损失函数则针对目标的位置和形状提供了一种更加精确的回归策略。
4.2 模型构建
在本节中,我们将详细介绍构建跌倒检测模型所需的代码实现。该实现涉及图像处理、深度学习模型的加载与运行,以及结果的解析等关键步骤。代码使用了Python编程语言,并结合了OpenCV、PyTorch以及专门的YOLO处理库ultralytics,这些工具的结合为开发高效准确的跌倒检测模型提供了坚实的基础。
首先,我们导入必要的库和模块。OpenCV库用于图像和视频的处理;PyTorch库是深度学习模型的核心,提供了模型的定义、训练和预测等功能;ultralytics库是YOLO算法的Python实现,包含了预训练模型的加载和目标检测的相关功能。
import cv2
import torch
from QtFusion.models import Detector
from datasets.label_name import Chinese_name
from ultralytics import YOLO
from ultralytics.utils.torch_utils import select_device
在代码的开始,我们定义了一个设备选择变量device,它自动检测是否有可用的GPU并据此设置计算设备。这一步骤对于加速模型运算至关重要,尤其是在处理大量图像数据时。接着,我们设置了初始参数ini_params,它包含了模型运行时需要的配置,例如置信度阈值、IOU阈值和设备类型等。这些参数在模型预测时起着决定性作用,它们控制着模型如何筛选和识别目标。
device = "cuda:0" if torch.cuda.is_available() else "cpu"
ini_params = {
'device': device,
'conf': 0.25,
'iou': 0.5,
'classes': None,
'verbose': False
}
为了对检测到的类别进行计数,我们定义了count_classes函数,它接受检测结果和类别名称列表,返回每个类别的计数。这对于分析模型在不同类别上的检测效果非常有用。
def count_classes(det_info, class_names):
count_dict = {name: 0 for name in class_names}
for info in det_info:
class_name = info['class_name']
if class_name in count_dict:
count_dict[class_name] += 1
count_list = [count_dict[name] for name in class_names]
return count_list
YOLOv8v5Detector类是此代码的核心,它继承自Detector类并对其进行扩展。类的构造函数__init__初始化了模型对象和内部状态。我们定义了load_model方法来加载预训练的YOLO模型,并对其进行设备配置。在加载模型时,类别名称会根据提供的Chinese_name字典转换成中文,以便在结果展示时更加直观。在图像预处理阶段,preprocess方法被定义用来处理传入的图像,这一步通常包含尺寸调整和归一化等操作,但在我们的实现中,它直接返回原始图像以供后续处理。
class YOLOv8v5Detector(Detector):
def __init__(self, params=None):
super().__init__(params)
self.model = None
self.img = None
self.names = list(Chinese_name.values())
self.params = params if params else ini_params
def load_model(self, model_path):
self.device = select_device(self.params['device'])
self.model = YOLO(model_path)
names_dict = self.model.names
self.names = [Chinese_name[v] if v in Chinese_name else v for v in names_dict.values()]
self.model(torch.zeros(1, 3, *[self.imgsz] * 2).to(self.device).type_as(next(self.model.model.parameters())))
def preprocess(self, img):
self.img = img
return img
def predict(self, img):
results = self.model(img, **ini_params)
return results
def postprocess(self, pred):
results = []
for res in pred[0].boxes:
for box in res:
class_id = int(box.cls.cpu())
bbox = box.xyxy.cpu().squeeze().tolist()
bbox = [int(coord) for coord in bbox]
result = {
"class_name": self.names[class_id],
"bbox": bbox,
"score": box.conf.cpu().squeeze().item(),
"class_id": class_id,
}
results.append(result)
return results
def set_param(self, params):
self.params.update(params)
预测功能在predict方法中实现,该方法调用YOLO模型对图像进行预测。postprocess方法则负责处理模型的输出,将其转换为易于理解的结果列表,每个结果包含了类别名称、边界框坐标、置信度和类别ID。这一步是从技术角度向应用层的转换,使得检测结果可以用于报警、统计或进一步分析。最后,set_param方法提供了一种方式来更新模型的运行参数。这为调整模型行为提供了灵活性,使我们能够根据不同的应用场景和需求进行优化。
综上,这部分代码不仅实现了从图像输入到跌倒检测结果输出的整个流程,还提供了足够的灵活性来适应不同的实验设置和部署要求。通过这样的代码设计和实现,我们构建了一个强大的跌倒检测系统,它能够在多种环境和条件下准确地识别跌倒事件。
4.3 训练代码
在跌倒检测研究中,模型训练是实现高精度识别的关键步骤。我们的训练流程是在严格控制的条件下进行的,以确保模型能够在实际应用中达到最佳性能。这一段博客将详细介绍如何使用Python代码对YOLOv8模型进行训练,以及这些代码背后的含义以下表格详细介绍了YOLOv8模型训练中使用的一些重要超参数及其设置:
超参数 | 设置 | 说明 |
---|---|---|
学习率(lr0 ) | 0.01 | 决定了模型权重调整的步长大小,在训练初期有助于快速收敛。 |
学习率衰减(lrf ) | 0.01 | 控制训练过程中学习率的降低速度,有助于模型在训练后期细致调整。 |
动量(momentum ) | 0.937 | 加速模型在正确方向上的学习,并减少震荡,加快收敛速度。 |
权重衰减(weight_decay ) | 0.0005 | 防止过拟合,通过在损失函数中添加正则项减少模型复杂度。 |
热身训练周期(warmup_epochs ) | 3.0 | 初始几个周期内以较低的学习率开始训练,逐渐增加到预定学习率。 |
批量大小(batch ) | 16 | 每次迭代训练中输入模型的样本数,影响GPU内存使用和模型性能。 |
输入图像大小(imgsz ) | 640 | 模型接受的输入图像的尺寸,影响模型的识别能力和计算负担。 |
环境设置与模型加载:首先,我们导入了必要的模块。os和yaml模块被用来处理文件路径和读取数据集配置文件。torch模块是PyTorch的核心,提供了深度学习模型的训练和推理功能。YOLO类代表了我们将要训练的模型。abs_path函数用于获取文件的绝对路径,确保无论代码在哪里运行,路径都能正确解析。
import os
import torch
import yaml
from ultralytics import YOLO # 用于加载YOLO模型
from QtFusion.path import abs_path # 用于获取文件的绝对路径
device变量负责检测系统是否有GPU可用。如果可以使用GPU(通常被编号为"0"),则选用它以加速训练过程;如果不行,则回退到CPU。
device = "0" if torch.cuda.is_available() else "cpu"
数据集准备:在这里,workers设置了数据加载时使用的线程数,而batch设置了每个批次中的样本数。较大的批次可以提高训练的效率,但也会增加内存的需求。这里设置了数据集的名称,并构造了数据集配置文件的路径。abs_path确保我们可以获取该文件的绝对路径。unix_style_path将路径转换为UNIX风格的路径(即使用正斜杠)。
workers = 1 # 工作进程数
batch = 8 # 每批处理的图像数量
data_name = "FallDet"
data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')
unix_style_path = data_path.replace(os.sep, '/')
进一步,我们读取YAML文件以解析数据集信息,这是一个关键步骤,因为它包含了数据集的详细组织结构。这样的结构指导模型了解如何找到并使用训练、验证和测试数据。通过修改配置文件中的路径,我们确保了模型可以在当前运行环境中找到正确的数据路径。
directory_path = os.path.dirname(unix_style_path)
with open(data_path, 'r') as file:
data = yaml.load(file, Loader=yaml.FullLoader)
if 'path' in data:
data['path'] = directory_path
with open(data_path, 'w') as file:
yaml.safe_dump(data, file, sort_keys=False)
训练模型:最后,我们的代码使用YOLOv8进行跌倒检测要求我们加载一个预训练的模型作为基础,然后在特定的数据集上进行进一步训练。预训练模型带来的好处在于,它已经学习了大量通用视觉特征,因此能够加快后续训练的收敛速度,并提高模型对新数据的适应能力。在模型配置方面,我们设定了多个关键参数,它们将直接影响训练的效率和效果。这里的参数包括工作线程数、批次大小、图像尺寸、训练周期等。工作线程数决定了数据加载的并发能力,批次大小与模型在每一步训练中处理的数据量有关,图像尺寸确保了输入数据的一致性,而训练周期数则定义了模型训练的总时长。这些参数的设定都是为了最大化模型训练的效率和性能。最后,我们执行模型训练。这一步骤是所有准备工作的终点,也是模型实际学习和适应特定数据集特征的起点。训练过程会按照给定的参数反复执行,直至完成所有设定的训练周期。
model = YOLO(abs_path('./weights/yolov5nu.pt', path_type='current'), task='detect') # 加载预训练的YOLOv8模型
# model = YOLO('./weights/yolov5.yaml', task='detect').load('./weights/yolov5nu.pt') # 加载预训练的YOLOv8模型
# Training.
results = model.train( # 开始训练模型
data=data_path, # 指定训练数据的配置文件路径
device=device, # 自动选择进行训练
workers=workers, # 指定使用2个工作进程加载数据
imgsz=640, # 指定输入图像的大小为640x640
epochs=120, # 指定训练100个epoch
batch=batch, # 指定每个批次的大小为8
name='train_v5_' + data_name # 指定训练任务的名称
)
model = YOLO(abs_path('./weights/yolov8n.pt'), task='detect') # 加载预训练的YOLOv8模型
results2 = model.train( # 开始训练模型
data=data_path, # 指定训练数据的配置文件路径
device=device, # 自动选择进行训练
workers=workers, # 指定使用2个工作进程加载数据
imgsz=640, # 指定输入图像的大小为640x640
epochs=120, # 指定训练100个epoch
batch=batch, # 指定每个批次的大小为8
name='train_v8_' + data_name # 指定训练任务的名称
)
通过上述训练代码的细致介绍,我们可以看到从准备环境到执行训练的全面过程。这一过程充分体现了深度学习项目中模型训练阶段的复杂性和精细性,它要求开发者不仅要理解深度学习的原理,还要掌握如何在实践中高效实施这些原理。
5. 实验结果与分析
5.1 训练曲线
对于跌倒检测任务,深度学习模型的性能很大程度上取决于训练过程中损失函数的变化,以及评估指标的表现。在图中,我们可以看到基于YOLOv8模型的一系列训练损失和验证损失图,以及模型精确度和召回率等评估指标的变化趋势。这些图表提供了关于模型训练状态和性能的深刻见解。
在分析损失函数的图表时,我们注意到训练损失(train/loss)和验证损失(val/loss)在训练初期都经历了急剧的下降,随后逐渐趋于稳定。这是一个典型的表现,意味着模型在训练初期快速学习,随着优化的进行,学习速率减缓并开始稳定收敛。具体来看,边框损失(box_loss)直接关联到模型预测边界框的准确性。类别损失(cls_loss)反映了模型对不同类别判别的准确性,而目标损失(obj_loss)则是模型对有无目标(即跌倒事件)的判断能力。所有这些损失的下降表明,模型在辨识跌倒事件的位置、大小、类别方面的表现都在逐步提高。
精确度(precision)和召回率(recall)是衡量模型性能的两个关键指标。精确度是指模型预测为跌倒事件的样本中实际为跌倒事件的比例,而召回率则是指所有跌倒事件样本中被模型正确预测出的比例。图中展示的精确度和召回率都随着训练的进行而提高,显示出模型在区分跌倒事件方面的能力正在增强。特别是在训练后期,精确度和召回率的提升趋于平缓,这通常表示模型接近了其学习能力的上限。
mAP(mean Average Precision)是另一重要指标,它结合了精确度和召回率,给出了一个整体的性能衡量。从图中可见,mAP值随着训练的进行而稳步提升,这说明模型在各个IoU(Intersection over Union)阈值下都能维持较好的检测性能。值得注意的是,较低的IoU阈值(如mAP@0.5)意味着模型只需部分与目标重叠即可被视作正确的检测,而较高的IoU阈值(如mAP@0.5-0.95)则对模型的检测精度提出了更高的要求。本模型在广泛的IoU阈值上表现良好,显示了其在检测任务上的鲁棒性。
综合上述分析,YOLOv8模型在跌倒检测任务上展现了优秀的学习能力和高效的性能提升。损失函数的下降趋势、精确度与召回率的提高,以及在不同IoU阈值下稳定的mAP值,都指示了模型具备良好的跌倒事件检测能力。
5.2 F1-Score曲线图
F1分数是精确度和召回率的调和平均值,是评价分类模型性能的重要指标,尤其是在数据集不平衡时。在图中,我们可以观察到随着置信度阈值的增加,模型的F1分数先上升后下降,呈现出一种典型的“倒U”型趋势。这一趋势反映了在不同置信度阈值下,模型性能的变化规律。
曲线在置信度阈值约为0.384时达到顶峰,F1分数约为0.84,这表明模型在这个阈值下取得了精确度和召回率之间的最佳平衡。当置信度阈值较低时,模型倾向于将更多的样本标记为正类,这提高了召回率但可能会降低精确度。随着置信度阈值的增加,模型变得更为保守,仅当其非常确信时才将样本标记为正类,这提高了精确度但同时减少了召回率。
图中所示,F1分数在置信度阈值较低时迅速上升,说明提高置信度阈值可以迅速排除大量的误判,从而提升精确度。然而,当阈值超过最优点后,模型的F1分数急剧下降,这可能是因为许多正类样本未能被检测到,导致召回率下降。
在跌倒检测的实际应用中,找到这样一个最优置信度阈值至关重要,因为它能确保既不会错过过多的实际跌倒事件(高召回率),也不会产生过多的误报(高精确度)。从图中可以看出,模型在接近0.384的置信度阈值时性能最佳,因此可以将该阈值作为跌倒检测模型在实际部署时的推荐设置。
这些洞察对于后续的模型调优工作至关重要。通过细致调整置信度阈值,并结合其他模型参数的优化,可以进一步提升模型的性能。同时,评估结果也为我们提供了反馈,指明了模型可能的弱点和改进方向。例如,如果召回率相对较低,则可以通过降低置信度阈值或增加正样本的权重来进行改进;反之,如果精确度较低,则可能需要增强负样本的权重或调整模型结构来减少误判。
5.3 YOLOv8/v7/v6/v5对比实验
(1)实验设计:
本实验旨在评估和比较YOLOv5、YOLOv6、YOLOv7和YOLOv8几种模型在跌倒目标检测任务上的性能。为了实现这一目标,博主分别使用使用相同的数据集训练和测试了这四个模型,从而可以进行直接的性能比较。该数据集包含跌倒的图像。本文将比较分析四种模型,旨在揭示每种模型的优缺点,探讨它们在工业环境中实际应用的场景选择。
模型 | 图像大小 (像素) | mAPval 50-95 | CPU ONNX 速度 (毫秒) | A100 TensorRT 速度 (毫秒) | 参数数量 (百万) | FLOPs (十亿) |
---|---|---|---|---|---|---|
YOLOv5nu | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
YOLOv8n | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
YOLOv6N | 640 | 37.5 | - | - | 4.7 | 11.4 |
YOLOv7-tiny | 640 | 37.4 | - | - | 6.01 | 13.1 |
(2)度量指标:
- F1-Score:F1-Score 作为衡量模型性能的重要指标,尤其在处理类别分布不均的数据集时显得尤为关键。它通过结合精确率与召回率,提供了一个单一的度量标准,能够全面评价模型的效能。精确率衡量的是模型在所有被标记为正例中真正属于正例的比例,而召回率则关注于模型能够识别出的真正正例占所有实际正例的比例。F1-Score通过两者的调和平均,确保了只有当精确率和召回率同时高时,模型的性能评估才会高,从而确保了模型对于正例的预测既准确又完整。
- mAP(Mean Average Precision):在目标检测任务中,Mean Average Precision(mAP)是评估模型性能的重要标准。它不仅反映了模型对单个类别的识别精度,而且还考虑了所有类别的平均表现,因此提供了一个全局的性能度量。在计算mAP时,模型对于每个类别的预测被单独考虑,然后计算每个类别的平均精度(AP),最后这些AP值的平均数形成了mAP。
名称 | YOLOv5nu | YOLOv6n | YOLOv7-tiny | YOLOv8n |
---|---|---|---|---|
mAP | 0.884 | 0.880 | 0.841 | 0.897 |
F1-Score | 0.84 | 0.84 | 0.81 | 0.84 |
(3)实验结果分析:
在进行跌倒检测的任务中,我们通过实验比较了四个版本的YOLO模型:YOLOv5nu、YOLOv6n、YOLOv7-tiny和YOLOv8n。实验的设计目的是为了评估每个模型在相同条件下的性能,确保评估的公平性和一致性。我们选用了F1-Score和mAP作为度量指标,前者结合了准确率和召回率的综合评价,后者则评价了模型在不同置信度阈值下的平均精度。
从实验结果来看,我们可以看到YOLOv8n在mAP上表现最佳,达到了0.897,而YOLOv5nu和YOLOv6n表现相近,mAP分别为0.884和0.880,YOLOv7-tiny的表现稍逊,mAP为0.841。这一结果表明,随着YOLO系列版本的迭代,模型的检测精度有所提高。尤其是YOLOv8n,在处理相同数据集时表现出了更加精确的检测能力,这可能得益于模型架构和训练策略的优化。
在F1分数方面,除了YOLOv7-tiny稍低,为0.81,其他三个模型都维持在0.84的水平。这表明在召回率和精确度的权衡上,YOLOv5nu、YOLOv6n和YOLOv8n能够达到较好的平衡,而YOLOv7-tiny可能在某些情况下存在漏检或误检的问题。
YOLOv8n之所以表现优秀,可能与其采用的最新网络架构有关,这些架构能够更好地捕捉跌倒行为的复杂特征。同时,YOLOv8n可能在训练过程中使用了更高级的优化算法和数据增强策略,进一步提升了模型的泛化能力。反观YOLOv7-tiny,虽然它是为了在较低计算资源下运行而设计的轻量化模型,其在资源受限的环境中有较好的适应性,但相应地,在复杂任务上可能损失了一些性能。
通过综合考虑模型的架构、训练策略和实验结果,我们可以得出结论:虽然更新的模型版本通常会带来性能的提升,但同时也要考虑到实际应用中的资源限制和特定需求,选择最合适的模型版本。对于未来的工作,我们可以进一步探索模型训练过程中的超参数调整,数据增强方法以及不同网络架构的特点,以便在各种实际应用场景中都能达到最佳的跌倒检测效果。
6. 系统设计与实现
6.1 系统架构概览
在开发基于YOLOv8/v7/v6/v5的跌倒检测系统时,我们采用了一个模块化和灵活的架构设计,以确保系统不仅能够高效地处理图像和视频数据,还能够轻松适应新的需求和改进。本系统的设计旨在实现易于使用、高效率的目标检测,特别是在跌倒检测应用场景中。以下是我们系统的主要架构组件和它们的功能:
- 模型加载与预处理 (
YOLOv8v5Detector
)
在跌倒检测系统中,YOLOv8v5Detector
类负责加载预训练的YOLOv8/v7/v6/v5模型,并对输入的图像或视频帧进行预处理,以符合模型的输入要求。该类使用load_model
方法加载模型,并通过preprocess
方法对输入数据进行标准化和尺寸调整。
- 配置参数管理
通过 Detection_UI
类,系统允许用户通过图形用户界面(GUI)动态调整识别相关的配置参数,如置信度阈值(conf_threshold
)和IOU阈值(iou_threshold
)等,以满足不同场景下的检测精度要求。这些参数的设置直接影响模型的检测结果和性能。
- 图像和视频处理流程
Detection_UI
类还负责处理来自不同输入源的图像和视频数据。它支持从文件上传(图片和视频文件)和摄像头实时捕获两种输入方式。通过process_camera_or_file
方法,系统能够根据用户的选择处理相应的输入数据,并显示检测结果。
- 检测与结果展示
一旦图像或视频帧被处理,frame_process
方法将被调用以执行目标检测。该方法首先利用YOLOv8v5Detector
执行预测,然后通过postprocess
方法处理模型的输出,提取跌倒检测的结果。检测到的结果包括目标的类别、位置、置信度等信息,这些信息随后被用于在GUI中绘制检测框和显示检测信息。
- 日志和数据管理 (
LogTable
,ResultLogger
)
为了方便用户追踪和分析检测结果,系统通过 LogTable
和 ResultLogger
类提供了日志记录和数据管理功能。LogTable
类负责保存每次检测的详细信息,包括时间、位置、置信度等,而ResultLogger
则用于合并和格式化检测结果,便于在GUI中展示。
- 用户交互界面
最后,我们通过Streamlit构建了一个直观的用户交互界面(UI),允许用户轻松配置模型参数、选择输入源、启动检测过程并查看结果。setup_sidebar
和 setupMainWindow
方法分别用于初始化侧边栏和主窗口的布局和元素,包括模型设置、输入源选择、显示模式配置等。
6.2 系统流程
让我们深入探讨基于YOLOv8/v7/v6/v5的跌倒检测系统的具体工作流程。通过结合代码中的关键类和方法,我们将逐步展示如何从初始化系统到处理输入、检测跌倒,最后到展示和记录检测结果的完整流程。
- 系统初始化
一开始,系统通过实例化Detection_UI
类来启动。这个类作为系统的中心枢纽,负责整合各个组件并初始化跌倒检测所需的各项参数,如模型类型、置信度阈值、IOU阈值等。此外,它还负责调用setup_page
方法来设置页面配置,如页面标题、图标等,以及调用setup_sidebar
方法配置UI侧边栏,让用户可以自定义模型参数和选择输入源。
- 输入源配置
在UI侧边栏,用户可以通过setup_sidebar
方法提供的界面选择模型类型、调整置信度阈值、IOU阈值,并选择输入源类型(摄像头、图片文件、视频文件)。此处,YOLOv8v5Detector
类被实例化并加载了预训练的模型权重,准备进行跌倒检测。
- 处理输入源
根据用户的选择,process_camera_or_file
方法将处理不同的输入源:摄像头输入:如果用户选择了摄像头作为输入源,此方法将使用OpenCV的VideoCapture
功能捕获实时视频流;图片或视频文件:用户上传的文件将被读取,并准备好进行后续的图像处理和跌倒检测。
- 图像帧处理
对于摄像头捕获的实时视频流或用户上传的图片/视频文件,每一帧图像都将通过frame_process
方法进行处理。这一过程包括:预处理:图像帧被调整大小以适应模型输入,然后进行必要的图像预处理;模型预测:调整后的图像帧被传递给YOLOv8v5Detector
类的预测方法,该方法利用加载的模型进行跌倒检测;结果处理:模型的预测结果将被后处理,包括绘制边界框、标记检测对象等。
- 结果展示与记录
检测结果将在系统主界面上通过setupMainWindow
方法动态展示。用户不仅可以看到带有边界框的图像或视频流,还可以看到检测结果的具体信息,如检测到的对象、置信度等。此外,检测结果也会被记录下来,支持导出到CSV文件中,为用户提供了一种方式来分析和存储检测数据。
通过上述流程,我们的跌倒检测系统能够为用户提供一个直观、高效的检测平台,帮助快速识别和定位布匹中的缺陷。这一流程不仅体现了系统的高度自动化和用户友好性,还展示了我们在技术上的深厚积累和对细节的精细把握。
代码下载链接
如果您希望获取博客中提及的完整资源包,包含测试图片、视频、Python文件(*.py)、网页配置文件、训练数据集、代码及界面设计等,可访问博主在面包多平台的上传内容。相关的博客和视频资料提供了所有必要文件的下载链接,以便一键运行。完整资源的预览如下图所示:
资源包中涵盖了你需要的训练测试数据集、训练测试代码、UI界面代码等完整资源,完整项目文件的下载链接可在下面的视频简介中找到➷➷➷
演示及项目介绍视频:https://www.bilibili.com/video/BV1Bx4y1v7CK/
完整安装运行教程:
这个项目的运行需要用到Anaconda和Pycharm两个软件,下载到资源代码后,您可以按照以下链接提供的详细安装教程操作即可运行成功,如仍有运行问题可私信博主解决:
- Pycharm和Anaconda的安装教程:https://deepcode.blog.csdn.net/article/details/136639378;
软件安装好后需要为本项目新建Python环境、安装依赖库,并在Pycharm中设置环境,这几步采用下面的教程可选在线安装(pip install直接在线下载包)或离线依赖包(博主提供的离线包直接装)安装两种方式之一:
- Python环境配置教程:https://deepcode.blog.csdn.net/article/details/136639396(2,3方法可选一种);
- 离线依赖包的安装指南:https://deepcode.blog.csdn.net/article/details/136650641(2,3方法可选一种);
如使用离线包方式安装,请下载离线依赖库,下载地址:https://pan.baidu.com/s/1uHbU9YzSqN0YP_dTHBgpFw?pwd=mt8u (提取码:mt8u)。
7. 结论与未来工作
本文通过深入研究并实践了基于YOLOv8/v7/v6/v5的深度学习模型在跌倒检测领域的应用,成功开发了一个结合了这些先进算法的跌倒检测系统。通过对多个版本的YOLO模型进行细致的比较和优化,本研究不仅提升了跌倒检测的准确率和实时性,还通过Streamlit创建了一个直观、美观且易于使用的Web应用,使用户能够轻松地进行跌倒检测,从而在实际应用中发挥重要作用。
经过一系列实验验证,本文所提出的跌倒检测方法在准确性和处理速度上都达到了令人满意的水平。同时,我们还提供了完整的数据集处理流程、模型训练和预测的代码,以及基于Streamlit的系统设计和实现细节,为后续的研究者和开发者复现和参考提供了方便。尽管取得了一定的成果,但跌倒检测作为一个复杂多变的任务,仍然面临着许多挑战和改进空间。在未来的工作中,我们计划从以下几个方向进行探索:
- 模型优化:继续探索更深层次的网络结构和优化策略,如神经网络架构搜索(NAS)技术,以进一步提升模型的性能和效率。
- 多模态融合:考虑结合语音、文本等其他模态信息,采用多模态学习方法进行跌倒检测,以更全面地理解人类的情感和意图。
- 跨域适应性:研究跨文化、跨年龄组的跌倒检测,通过领域自适应技术提高模型在不同人群和环境中的泛化能力。
- 用户交互体验:进一步优化系统的用户界面和交互设计,使其更加人性化、智能化,以满足更广泛用户的需求。
- 实际应用拓展:探索跌倒检测在更多实际应用场景中的应用,如在线教育、远程会议、智能客服等,以发挥其最大的社会和经济价值。
总之,跌倒检测技术正处于快速发展之中,随着技术的不断进步和应用场景的不断拓展,我们相信在不久的将来,基于深度学习的跌倒检测将在人机交互、社会安全、医疗健康等领域发挥更加重要的作用。
Wang G, Chen Y, An P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190. ↩︎
Ng P H, Mai A, Nguyen H. Building an AI-Powered IoT App for Fall Detection Using Yolov8 Approach[C]//International Conference on Intelligence of Things. Cham: Springer Nature Switzerland, 2023: 65-74. ↩︎
Vaiyapuri T, Lydia E L, Sikkandar M Y, et al. Internet of things and deep learning enabled elderly fall detection model for smart homecare[J]. IEEE Access, 2021, 9: 113879-113888. ↩︎
Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28. ↩︎
Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016: 21-37. ↩︎