摘要:本文深入研究了基于YOLOv8/v7/v6/v5等深度学习模型的多目标检测系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄像头进行多目标检测,可上传不同训练模型(YOLOv8/v7/v6/v5)进行推理预测,界面可方便修改。本文附带了完整的网页设计、深度学习模型代码和训练数据集的下载链接。
文章目录
网页版-基于深度学习的多目标检测系统(YOLOv8/v7/v6/v5+实现代码+训练数据集)
1. 网页功能与效果
(1)开启摄像头实时检测:本系统允许用户通过网页直接开启摄像头,实现对实时视频流中多目标的检测。系统将自动识别并分析画面中的多目标,并将检测结果实时显示在用户界面上,为用户提供即时的反馈。
(2)选择图片检测:用户可以上传本地的图片文件到系统中进行多目标检测。系统会分析上传的图片,识别出图片中的多目标,并在界面上展示带有多目标标签和置信度的检测结果,让用户能够清晰地了解到每个多目标状态。
(3)选择视频文件检测:系统支持用户上传视频文件进行多目标检测。上传的视频将被系统逐帧分析,以识别和标记视频中每一帧的多目标。用户可以观看带有多目标检测标记的视频,了解视频中多目标的变化。
(4)选择不同训练好的模型文件:系统集成了多个版本的YOLO模型(如YOLOv8/v7/v6/v5),用户可以根据自己的需求选择不同的模型进行多目标检测。这一功能使得用户能够灵活地比较不同模型的表现,以选择最适合当前任务的模型。
本系统还集成了一系列高级功能,以提高用户的使用体验和检测效率。用户可以在检测画面中同时或单独显示检测画面和原始画面,便于直观比较检测结果与实际情况。通过可点击的下拉框,用户能够单独标记特定目标并显示结果,这一点对于关注特定类型目标的用户来说极其有用。所有的检测结果都会在页面的表格中显示,用户还可以根据需要动态调整检测算法的置信度阈值和IOU阈值,以优化检测结果的精度和召回率。
为了方便用户进一步分析和记录检测结果,本系统支持点击按钮将检测的表格结果输出到csv文件。此外,所有标记的图片、视频、摄像头画面结果都可以导出为avi图像文件,方便用户保存和分享检测结果。这些高级功能的设计,旨在为用户提供一个全面、灵活、易用的多目标检测工具,满足不同用户在不同应用场景下的需求。
2. 绪论
2.1 研究背景及意义
目标检测领域近年来经历了快速发展,尤其是深度学习的广泛应用极大地推动了这一领域的进步。YOLO系列作为目标检测中的重要算法,从YOLOv5到最近的YOLOv9,每个版本都在性能、速度和准确性方面做出了显著改进。YOLOv8引入了先进的特征提取和分类技术,提高了在复杂环境中的检测能力。随后的版本继续优化模型结构和训练过程,以应对不同规模和类型的目标检测任务。
与此同时,Transformer架构及其变体,如视觉Transformer(ViT)和DEtection TRansformer(DETR),在处理图像相关任务时展现出了巨大的潜力。ViT通过将图像分割成序列化的补丁,并利用自注意力机制来捕获全局依赖,为图像分类和目标检测带来了新的视角。DETR则是首个端到端的目标检测框架,它利用Transformer直接预测目标的边界框和类别,无需依赖于先验的锚框,简化了目标检测的流程。
Faster R-CNN作为一种经典的目标检测框架,通过引入区域建议网络(RPN)来生成高质量的候选区域,结合深度卷积网络进行特征提取和分类,已被广泛应用于各种目标检测任务。RetinaNet则通过引入Focal Loss来解决正负样本不平衡的问题,显著提高了检测小目标的能力。
在这篇博客中,我们将深入探讨基于YOLOv8/v7/v6/v5的多目标检测系统的研究背景和意义,展示这一领域的最新进展和我们的主要贡献。我们的工作不仅聚焦于技术层面的创新,如算法改进和数据集优化,也致力于提高系统的实用性和可访问性,如开发交互式Web应用界面,以促进技术在实际应用中的广泛部署。
2.2 国内外研究现状
在多目标检测领域,深度学习技术的应用已经取得了显著的进展。特别是目标检测算法,如YOLO系列,已经成为研究的热点。近年来,学者们不断探索和改进这些算法,以适应多目标检测的特殊需求,提高检测的准确性和效率。首先,YOLOv5算法因其出色的实时性和准确度在实际应用中广受欢迎。研究表明,通过对YOLOv5进行微调和优化,可以显著提高对多目标区域的识别能力1。此外,一些研究专注于通过改进算法结构和损失函数,进一步提高模型的检测性能2。随后,YOLOv6的发布为目标检测带来了新的变革。它通过引入更高效的特征提取网络和注意力机制,能够更准确地识别和定位多目标点3。YOLOv6的这些改进为处理复杂图像提供了强大的支持,特别是在复杂背景或光照条件不佳的情况下。
在数据集方面,传统的数据集如PASCAL VOC和MS COCO已经被广泛用于多目标检测的训练和评估中。最近,随着研究的深入,更多专注于特定场景的数据集被开发出来,例如Open Images Dataset、VisDrone等,它们提供了更多样化和具有挑战性的测试场景4。
尽管YOLO系列和其他深度学习模型在多目标检测任务上取得了显著的成果,但仍存在一些问题需要解决,比如对小目标的检测性能不佳、在复杂背景下的识别准确率下降、实时性与准确率之间的平衡等5。
针对这些挑战,研究者们提出了多种改进策略,包括但不限于使用更深或更复杂的网络结构、引入注意力机制、改进损失函数等。此外,模型压缩和加速技术也在不断发展,以满足实时多目标检测在边缘设备上的应用需求。
综上所述,多目标检测领域的技术进展表明了深度学习在解决复杂视觉任务中的潜力。随着算法的不断优化、数据集的不断丰富以及新技术的应用,未来多目标检测的准确性和效率有望得到进一步提升。
2.3 要解决的问题及其方案
2.3.1 要解决的问题
在设计基于YOLOv8/v7/v6/v5的多目标检测系统时,我们面临的主要问题和解决方案涉及深度学习模型的准确性、速度、泛化能力,以及用户交互界面的直观性和功能性。这些问题不仅对于提高系统性能至关重要,也对于确保用户体验和系统的可持续发展具有重要意义。
-
多目标检测的准确性和速度:
在多目标检测领域,准确性和速度是衡量模型性能的两个关键指标。考虑到实时应用的需求,如交通监控、人流统计等,一个理想的系统需要在保证高准确性的同时,也能快速处理图像和视频数据。YOLO系列模型以其出色的实时性能而著名,但随着版本的迭代,我们不断探索在不牺牲速度的前提下进一步提高准确性的方法。 -
环境适应性和模型泛化能力:
多目标检测系统在不同的环境条件下可能面临变化的光照、复杂背景以及极端天气情况的挑战,这些因素都可能影响模型的识别准确度。因此,提高模型的环境适应性和泛化能力是我们的另一个关键任务。通过使用大规模和多样化的数据集进行训练,以及采用数据增强技术,可以有效提升模型的泛化能力。 -
用户交互界面的直观性和功能性:
对于基于YOLO的多目标检测系统,开发一个直观、易用且功能丰富的Web应用界面至关重要。用户应能轻松上传图像或视频,进行实时检测,同时能够无缝切换不同版本的YOLO模型以比较性能。基于Streamlit的Web界面设计,结合CSS进行美化,可以提供一个用户友好的操作环境。 -
** 集成和优化深度学习模型**:
为了在Web应用中集成和运行深度学习模型,我们需要关注模型的优化和加速技术。使用PyTorch框架,可以利用其灵活性和高效性进行模型训练和推理。此外,通过模型压缩和量化等技术,可以进一步提高模型在服务器和边缘设备上的运行速度。
2.3.2 解决方案
-
利用YOLOv8/v7/v6/v5深度学习模型:
我们选择YOLOv8作为核心模型,考虑到其在实时处理和高准确度之间的出色平衡。对于不同的应用场景,也会考虑YOLOv7、v6、v5等版本的模型,以便根据具体需求选择最合适的模型。 -
基于PyTorch的技术框架:
选用PyTorch作为开发框架,它不仅提供了灵活且强大的深度学习模型开发和训练工具,还支持快速迭代和GPU加速,非常适合本项目的需求。 -
多模型对比与性能评估:
在系统中集成多个版本的YOLO模型,提供用户界面选项,使用户能够根据需求上传不同的模型文件进行性能对比,进一步优化检测策略。 -
基于Streamlit的交互式Web应用:
基于Streamlit设计的Web应用,不仅支持上传和实时检测功能,还允许用户方便地切换模型和调整参数,实现真正的交互式体验。
通过实施上述解决方案,我们的目标是开发出一个既准确又高效的多目标检测系统,该系统不仅能够满足工业生产中对多目标检测的需求,同时也提供友好的用户体验和强大的数据处理能力。
2.4 博文贡献与组织结构
本文详细探讨了基于YOLOv8/v7/v6/v5的多目标检测系统,旨在为计算机视觉领域的研究者和开发者提供一个全面而深入的指南。通过综合比较不同版本的YOLO算法,本文不仅揭示了每种模型在多目标检测任务上的性能,还详细介绍了数据集处理的技术细节、系统设计的关键考虑因素以及实验结果的深度分析。此外,本文还基于Streamlit设计了一个美观且用户友好的网页界面,允许用户方便地上传图像或视频进行实时目标检测,同时提供了切换不同模型进行性能比较的功能。以下是本文的主要贡献:
-
全面的文献综述:本文提供了一个关于多目标检测算法,特别是YOLO系列(包括YOLOv8/v7/v6/v5)的综合性文献综述,分析了各版本之间的改进点和性能差异。
-
精细的数据集处理:介绍了数据集的选择、处理和增强方法,以及它们对模型训练效果的影响,为读者处理自己的数据集提供了实用指导。
-
算法选择与优化:对比分析了YOLOv8、YOLOv7、YOLOv6、YOLOv5等不同版本的性能,基于实验结果,选择了最适合多目标检测任务的模型,并对其进行了进一步的优化,以提高检测速度和准确率。
-
友好的Web界面设计:基于Streamlit设计并实现了一个直观且功能丰富的Web应用,使用户能够轻松上传图像或视频进行多目标检测,同时支持不同模型间的切换和比较。
-
算法效果对比:细致地对比了YOLOv7、YOLOv6、YOLOv5在多目标检测任务上的性能,包括检测准确率、速度和资源消耗等方面,为用户选择最适合自己需求的模型提供了依据。
-
资源共享:本文提供了完整的数据集、训练和预测代码资源包下载链接,方便读者进行实践和进一步研究。
后续章节的组织结构如下: 绪论:介绍研究背景、目的和本文的主要贡献;算法原理:详细介绍YOLOv8/v7/v6/v5等算法的工作原理及其在多目标检测中的应用;数据集处理:讨论使用的数据集及其预处理、增强方法。代码介绍:提供模型训练和预测的详细代码说明,包括环境搭建、参数配置和执行步骤。实验结果与分析:展示各版本YOLO算法在多目标检测任务上的实验结果,包括准确率、速度等指标的对比分析。系统设计与实现:介绍基于Streamlit的多目标检测系统的设计与实现细节。结论与未来工作:总结本文的研究成果,并讨论未来的研究方向和潜在的改进空间。
3. 数据集处理
在构建基于YOLOv8/v7/v6/v5的多目标检测系统时,一个高质量的数据集是至关重要的。我们精心准备的数据集共含8449张图像,其中5377张用于训练,1872张用于验证,以及1200张用于测试。这种分配确保了模型在训练过程中能够学习到足够的特征表示,并在验证和测试阶段准确评估其性能。博主使用的类别如下:
Chinese_name = {"-angel-": "天使",
"-apple-": "苹果",
"-book-": "书",
"-carnation-": "康乃馨",
"-clock-": "计时器",
"-crown-": "皇冠",
"-dog-": "狗",
"-key-": "钥匙",
"-lily-": "百合",
"-mother-": "圣母",
"-orange-": "橙子",
"-pigeon-": "鸽子",
"-pomegranate-": "石榴",
"-rose-": "玫瑰",
"-skull-": "骷髅",
"-snake-": "蛇"}
我们的数据集特点鲜明,首先在类别上的多样性,它包括了日常物品、动物、水果等多种类型的对象,这种多样性加强了模型对于不同类别的识别能力,尤其对于辨别形状、大小和纹理各异的目标至关重要。通过分析数据集分布图,我们注意到类别间的实例数量存在不平衡,例如某些水果类别的实例远多于其他类别,这可能是由于数据收集过程中可用资源的偏差所导致。为了克服这一挑战,我们可能需要采用特定的训练技巧,如权重调整或过采样少数类别,以避免模型对频繁出现的类别过度拟合,同时提高对较少见类别的检测能力。
对于目标位置的分析显示,多数对象倾向于出现在图像中心区域,这一发现对于调整模型的注意力机制和锚框设置具有指导意义。与此同时,边界框尺寸分析揭示了一个普遍的现象:较小的对象占据了图像中的主要比例。这个特点提示我们,在训练过程中需要确保模型能够捕捉到细小目标的特征,并正确地定位它们。
在数据预处理和增强方面,我们采取了一系列标准化措施,以优化模型的训练效果。所有图像都被调整到了统一的尺寸,并进行了归一化处理以减少光照和颜色偏差的影响。数据增强包括随机裁剪、翻转和旋转等操作,不仅丰富了模型的训练样本,也提高了模型对于各种变换不变性的适应性。
综上所述,我们提供的数据集既考虑了类别的多样性和丰富性,也注意到了实例分布的平衡性,边界框的分布特征,以及数据预处理和增强的重要性。通过对这些因素的细致考量,我们的数据集为多目标检测模型的训练和评估提供了一个坚实的基础,同时也为进一步的性能优化铺平了道路。
4. 原理与代码介绍
4.1 YOLOv8算法原理
YOLOv8(You Only Look Once version 8)是一种最新的、用于目标检测、图像分类和实例分割任务的先进YOLO模型。YOLOv8与前代产品相比,专注于提高准确性和效率。
YOLOv8的主要特点和改进包括:
- 提高检测速度:YOLOv8 实现了比其他目标检测模型更快的推理速度,同时保持了高精度。
- 对用户友好:YOLOv8 可以在任何标准硬件中成功安装并高效运行。最新的 YOLOv8 实现带来了许多新功能,尤其是用户友好的 CLI 和 GitHub 存储库。
- 无锚点检测:无需手动指定锚点框,从而增强了灵活性和效率。这种省略是有益的,因为锚框的选择可能具有挑战性,并且可能导致早期 YOLO 模型(如 v1 和 v2)的结果欠佳。
YOLOv8的架构和特性包括:
(1)无锚点检测:锚框是一组具有特定高度和宽度的预定义框,用于检测具有所需比例和纵横比的对象类。它们是根据训练数据集中对象的大小选择的,并在检测期间在图像上平铺。YOLOv8是一个无锚点模型,使得YOLOv8更加灵活和高效。
(2)多尺度目标检测:YOLOv8 引入了一个特征金字塔网络。该网络由多个层组成,专门设计用于检测不同尺度的物体。这种多尺度方法增强了模型有效识别图像中不同大小物体的能力。
(3)骨干网:YOLOv8 的骨干是 CSPDarknet53 架构的修改版本,具有 53 个卷积层。它的与众不同之处在于结合了跨阶段的部分连接,增强了层之间的信息流。这种战略设计提高了模型理解图像中复杂模式和关系的能力。
(4)头部:YOLOv8 的头部由多个卷积层组成,后跟全连接层。该段在预测图像中已识别对象的边界框、对象性分数和类概率方面起着至关重要的作用。它充当决策中心,对每一层的模型进行优化预测。
4.2 模型构建
在我们的多目标检测系统中,我们从几个重要的库中导入了必要的模块。cv2是OpenCV库的一部分,负责处理图像和视频数据。torch是PyTorch的核心,一个强大的深度学习库。Detector和HeatmapGenerator用于模型的构建和输出的可视化。Chinese_name提供了从类别到中文名称的映射。YOLO类和select_device函数来自ultralytics,用于加载YOLO模型并选择合适的计算设备。
import cv2
import torch
from QtFusion.models import Detector
from datasets.label_name import Chinese_name
from ultralytics import YOLO
from ultralytics.utils.torch_utils import select_device
这里设定了模型运行的初始化参数。如果GPU可用,我们将使用GPU来加速模型的运行;否则,我们会回退到CPU。conf设定了置信度阈值,用来判断一个检测是否有效。iou是非极大值抑制中的一个重要参数,用来处理重叠的检测框。
device = "cuda:0" if torch.cuda.is_available() else "cpu"
ini_params = {
'device': device,
'conf': 0.25,
'iou': 0.5,
'classes': None,
'verbose': False
}
count_classes
函数接收检测结果和类别名称,返回一个计数列表,表示每个类别的检测数量。它接受检测信息和类别名称列表作为输入,并返回一个与类别名称列表相对应的计数列表。这个功能对于分析模型在不同类别上的表现非常有用。
def count_classes(det_info, class_names):
count_dict = {name: 0 for name in class_names}
for info in det_info:
class_name = info['class_name']
if class_name in count_dict:
count_dict[class_name] += 1
count_list = [count_dict[name] for name in class_names]
return count_list
YOLOv8v5Detector类封装了模型的行为,包括模型加载、图像预处理、预测和后处理。模型加载功能选择适当的设备并加载预训练的YOLO模型,以确保可以立即进行目标检测。预处理功能在当前实现中直接返回传入的图像,但为未来可能的图像转换留出了空间。预测功能是模型的核心,它接受输入图像并使用YOLO模型产生检测结果。这个过程将图像中潜在的每个目标封装为一系列预测结果,其中包括类别、边界框和置信度分数。后处理函数进一步解析YOLO模型的原始输出,将其转换成一种更加结构化和可读性强的格式。这个步骤至关重要,因为它使最终用户能够轻松理解和使用模型的预测结果。
class YOLOv8v5Detector(Detector):
def __init__(self, params=None):
super().__init__(params)
self.model = None
self.img = None
self.names = list(Chinese_name.values())
self.params = params if params else ini_params
def load_model(self, model_path):
self.device = select_device(self.params['device'])
self.model = YOLO(model_path)
names_dict = self.model.names
self.names = [Chinese_name[v] if v in Chinese_name else v for v in names_dict.values()]
self.model(torch.zeros(1, 3, *[self.imgsz] * 2).to(self.device).type_as(next(self.model.model.parameters())))
def preprocess(self, img):
self.img = img
return img
def predict(self, img):
results = self.model(img, **ini_params)
return results
def postprocess(self, pred):
results = []
for res in pred[0].boxes:
for box in res:
class_id = int(box.cls.cpu())
bbox = box.xyxy.cpu().squeeze().tolist()
bbox = [int(coord) for coord in bbox]
result = {
"class_name": self.names[class_id],
"bbox": bbox,
"score": box.conf.cpu().squeeze().item(),
"class_id": class_id,
}
results.append(result)
return results
def set_param(self, params):
self.params.update(params)
最后,提供了一个设置参数的方法,允许用户在运行时根据需求调整模型的置信度和IOU阈值。这意味着用户可以动态调整模型的行为,以获得更好的检测效果,例如,在精确度更重要的情况下提高置信度阈值,或者在召回率更重要时降低它。
通过这些方法,我们可以实现从加载模型到获取检测结果的完整流程。最终,这些代码片段的整合不仅提高了检测效率,而且通过优化后的参数设置和预处理策略,进一步提升了检测的准确率。这些都是多目标检测系统的技术核心。
4.3 训练代码
在本篇博客中,我们将探讨如何使用YOLOv8模型来训练一个多目标检测系统。这一过程不仅涉及到深度学习模型的加载和初始化,还包括数据集的准备以及训练参数的配置。以下表格详细介绍了YOLOv8模型训练中使用的一些重要超参数及其设置:
超参数 | 设置 | 说明 |
---|---|---|
学习率(lr0 ) | 0.01 | 决定了模型权重调整的步长大小,在训练初期有助于快速收敛。 |
学习率衰减(lrf ) | 0.01 | 控制训练过程中学习率的降低速度,有助于模型在训练后期细致调整。 |
动量(momentum ) | 0.937 | 加速模型在正确方向上的学习,并减少震荡,加快收敛速度。 |
权重衰减(weight_decay ) | 0.0005 | 防止过拟合,通过在损失函数中添加正则项减少模型复杂度。 |
热身训练周期(warmup_epochs ) | 3.0 | 初始几个周期内以较低的学习率开始训练,逐渐增加到预定学习率。 |
批量大小(batch ) | 16 | 每次迭代训练中输入模型的样本数,影响GPU内存使用和模型性能。 |
输入图像大小(imgsz ) | 640 | 模型接受的输入图像的尺寸,影响模型的识别能力和计算负担。 |
环境设置与模型加载:首先需要导入必要的库,以便在训练过程中使用它们的功能。
import os
import torch
import yaml
from ultralytics import YOLO # 用于加载YOLO模型
from QtFusion.path import abs_path # 用于获取文件的绝对路径
这些库提供了文件路径操作、深度学习功能和模型加载的能力。特别是ultralytics库中的YOLO类,这是我们训练YOLO模型的核心工具。
接下来,我们根据当前系统是否支持CUDA(即NVIDIA GPU加速)来设置设备变量。这一步对于加速训练过程至关重要。
device = "0" if torch.cuda.is_available() else "cpu"
数据集准备:我们首先设置了工作线程和批量大小,这些参数会影响数据加载的速度和内存使用。这里,workers指定了用于数据加载的工作线程数量,batch则设置了每个批次的图像数量。
workers = 1 # 工作进程数
batch = 8 # 每批处理的图像数量
为了正确地加载和处理训练数据,我们需要指定数据集配置文件的路径:
data_name = "MultiObj"
data_path = abs_path('datasets/MultiObj/multiobj.yaml', path_type='current') # 数据集的yaml的绝对路径
unix_style_path = data_path.replace(os.sep, '/')
这段代码构建了数据集配置文件的路径,并使用abs_path函数转换为绝对路径,以避免路径相关的错误。
紧接着,我们对数据集配置文件进行了一系列的读取和修改操作,以确保它指向正确的数据目录:
directory_path = os.path.dirname(unix_style_path)
with open(data_path, 'r') as file:
data = yaml.load(file, Loader=yaml.FullLoader)
if 'path' in data:
data['path'] = directory_path
with open(data_path, 'w') as file:
yaml.safe_dump(data, file, sort_keys=False)
训练模型:在数据集配置就绪后,我们加载了预训练的YOLO模型,并设置了任务类型为detect,准备开始训练。在这里,我们传递了所有必要的参数,包括图像大小imgsz,训练轮数epochs和训练任务的名称。此训练任务将执行120个时期的训练,这是一个在实践中通常需要根据实际情况调整的参数。
model = YOLO(abs_path('./weights/yolov5nu.pt', path_type='current'), task='detect') # 加载预训练的YOLOv8模型
# model = YOLO('./weights/yolov5.yaml', task='detect').load('./weights/yolov5nu.pt') # 加载预训练的YOLOv8模型
# Training.
results = model.train( # 开始训练模型
data=data_path, # 指定训练数据的配置文件路径
device=device, # 自动选择进行训练
workers=workers, # 指定使用2个工作进程加载数据
imgsz=640, # 指定输入图像的大小为640x640
epochs=120, # 指定训练100个epoch
batch=batch, # 指定每个批次的大小为8
name='train_v5_' + data_name # 指定训练任务的名称
)
model = YOLO(abs_path('./weights/yolov8n.pt'), task='detect') # 加载预训练的YOLOv8模型
results2 = model.train( # 开始训练模型
data=data_path, # 指定训练数据的配置文件路径
device=device, # 自动选择进行训练
workers=workers, # 指定使用2个工作进程加载数据
imgsz=640, # 指定输入图像的大小为640x640
epochs=120, # 指定训练100个epoch
batch=batch, # 指定每个批次的大小为8
name='train_v8_' + data_name # 指定训练任务的名称
)
通过上述过程,我们成功地配置并启动了多目标检测模型的训练任务。YOLOv8作为一个强大的目标检测框架,为我们的训练任务提供了良好的支持,使得训练过程既高效又方便。在训练完成后,我们将得到一个针对多目标检测任务优化过的模型,它将能够准确识别和分析图像中的多目标,为后续的应用提供强大的技术支撑。
5. 实验结果与分析
5.1 训练曲线
分析深度学习模型的训练过程通常涉及对损失函数和评估指标的变化趋势进行详细的审视。由上传的图像提供的结果展示了YOLOv8模型在训练过程中损失和性能指标的演变情况。这些图表是模型优化过程中不可或缺的部分,因为它们为我们评估模型性能提供了实证基础。
首先观察损失函数的趋势。损失函数是机器学习中评估模型预测准确性的关键指标,它表明了模型预测结果与真实值之间的偏差。在图表中,我们可以看到训练和验证集上的边界框(box_loss)、分类(cls_loss)和目标定位(dfl_loss)的损失都随着训练的进行而逐渐降低,表明模型在学习数据的过程中持续改进,对目标的检测和分类能力在增强。损失函数曲线的平滑下降和收敛表明训练过程是稳定的,没有出现过拟合或欠拟合的情况,这对于模型泛化能力是一个积极的信号。
进一步观察精确度(Precision)和召回率(Recall)的指标,它们是目标检测任务中的重要性能评价标准。精确度反映了模型预测正确的目标检测框所占的比例,而召回率则度量了模型捕捉到的真实目标数量的比例。从图表中我们可以看出,精确度和召回率都随训练逐步提高,这说明模型在识别真正的目标方面越来越精准,同时减少了漏检的情况。这两个指标的提升是互补的,因为在实际应用中我们通常需要在两者之间找到一个平衡点。
最后,我们分析模型的平均精度(mAP)指标,特别是mAP@50和mAP@50-95。这两个指标是衡量目标检测模型性能的金标准。mAP@50度量了IOU(交并比)阈值为50%时模型的平均精度,而mAP@50-95则计算了在IOU从50%到95%这一范围内不同阈值的平均精度。这两个指标的稳步上升表明模型在各种阈值下都表现出色,尤其是在更严格的IOU阈值下的表现,这对于实际应用中对检测精度要求较高的场景特别重要。
总体而言,YOLOv8模型的训练过程表现出稳定性和高效性。损失函数的下降趋势以及精确度和召回率的提升,都表明模型的性能在持续提高。此外,mAP指标的提高也反映了模型在不同IOU阈值下都保持了良好的检测精度。这些结果为我们提供了信心,相信经过充分的训练,YOLOv8模型能够在多目标检测任务上取得卓越的表现。在接下来的工作中,我们将继续监控这些指标,以确保模型在未见数据上也能够维持其性能。
5.2 混淆矩阵
混淆矩阵是评估分类模型性能的一个重要工具,特别是在多类别目标检测任务中,它帮助我们理解模型在各个类别上的准确度以及它们之间可能发生的混淆程度。这幅图提供了一个归一化的混淆矩阵,通过该矩阵,我们可以评估我们的YOLOv8模型在测试集上的性能。
首先,我们注意到矩阵的主对角线,该对角线上的值代表了每个类别被正确分类的比例。对角线上的高值,如apple(0.91)、book(0.91)和dog(0.94),表明这些类别大多数情况下被正确识别。这些值越接近1,说明模型在该类别上的性能越好。这样的高准确度表明模型已经学会了这些类别的代表性特征,并能在大多数情况下正确区分。
另一方面,当混淆矩阵的非对角线元素含有较大的值时,这通常表明模型将某个类别错误地预测为另一个类别。例如,key这一类别被正确识别的概率为0.67,较低的准确度可能是由于该类别与其他类别(如dog或mother)有相似的特征或者训练样本不足造成的。类似地,angel类别具有0.42的正确识别率,可能是因为其特征在其他类别中也存在,使得模型难以准确区分。
重要的是要注意背景类别的分类情况。背景被正确识别的比例为0.45,这个比例较低,表明在许多情况下背景被误分类为其他类别。这种情况可能是由于背景区域包含的噪声或其他类别的特征,导致模型难以准确识别。
总结而言,混淆矩阵为我们提供了模型在特定类别上可能存在的问题的深入见解。对于准确度较低的类别,我们可能需要进一步调查,如增加这些类别的训练样本、进行特征工程或调整模型结构。同时,矩阵还揭示了模型对特定类别的误识别模式,这些信息可以指导我们进行针对性的模型改进。通过细致分析混淆矩阵,我们能够识别并解决模型在多类别目标检测中面临的挑战,以提高其整体性能和鲁棒性。
5.3 YOLOv8/v7/v6/v5对比实验
(1)实验设计:
本实验旨在评估和比较YOLOv5、YOLOv6、YOLOv7和YOLOv8几种模型在多目标目标检测任务上的性能。为了实现这一目标,博主分别使用使用相同的数据集训练和测试了这四个模型,从而可以进行直接的性能比较。该数据集包含多目标的图像。本文将比较分析四种模型,旨在揭示每种模型的优缺点,探讨它们在工业环境中实际应用的场景选择。
模型 | 图像大小 (像素) | mAPval 50-95 | CPU ONNX 速度 (毫秒) | A100 TensorRT 速度 (毫秒) | 参数数量 (百万) | FLOPs (十亿) |
---|---|---|---|---|---|---|
YOLOv5nu | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
YOLOv8n | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
YOLOv6N | 640 | 37.5 | - | - | 4.7 | 11.4 |
YOLOv7-tiny | 640 | 37.4 | - | - | 6.01 | 13.1 |
(2)度量指标:
- F1-Score:F1-Score 作为衡量模型性能的重要指标,尤其在处理类别分布不均的数据集时显得尤为关键。它通过结合精确率与召回率,提供了一个单一的度量标准,能够全面评价模型的效能。精确率衡量的是模型在所有被标记为正例中真正属于正例的比例,而召回率则关注于模型能够识别出的真正正例占所有实际正例的比例。F1-Score通过两者的调和平均,确保了只有当精确率和召回率同时高时,模型的性能评估才会高,从而确保了模型对于正例的预测既准确又完整。
- mAP(Mean Average Precision):在目标检测任务中,Mean Average Precision(mAP)是评估模型性能的重要标准。它不仅反映了模型对单个类别的识别精度,而且还考虑了所有类别的平均表现,因此提供了一个全局的性能度量。在计算mAP时,模型对于每个类别的预测被单独考虑,然后计算每个类别的平均精度(AP),最后这些AP值的平均数形成了mAP。
名称 | YOLOv5nu | YOLOv6n | YOLOv7-tiny | YOLOv8n |
---|---|---|---|---|
mAP | 0.864 | 0.880 | 0.765 | 0.879 |
F1-Score | 0.83 | 0.83 | 0.72 | 0.83 |
(3)实验结果分析:
在探索目标检测领域的最新进展时,我们设计了一项实验,旨在对比YOLO系列中的四个版本——YOLOv5nu、YOLOv6n、YOLOv7-tiny和YOLOv8n——在同一个数据集上的性能表现。实验的目的是评估这些模型在处理相同的检测任务时的有效性,并理解不同版本间性能的差异。实验设置确保了每个模型都在相同的条件下进行训练和评估,以保证结果的公平性和可比性。
度量指标的选择对于理解模型性能至关重要。在这项实验中,我们采用了两个主要的指标:mAP(平均精度均值)和F1-Score。mAP考虑了在不同置信度阈值下模型识别类别的能力,是目标检测任务中的一个标准评价指标;而F1-Score则是精确度和召回率的调和平均,能够综合反映模型的整体性能。
根据我们的实验结果,YOLOv6n在mAP指标上以0.880的分数领先,紧随其后的是YOLOv8n,得分为0.879。这表明了YOLOv6n和YOLOv8n在识别和定位目标方面具有卓越的准确性,这可能归因于它们更高效的网络架构和改进的特征提取机制。YOLOv5nu与YOLOv8n的表现相当,F1-Score为0.83,展现了它们稳定的性能。尽管YOLOv5nu的mAP略低于YOLOv6n和YOLOv8n,这个小差距可能与模型的大小和复杂性有关,YOLOv5nu可能在保持轻量化的同时牺牲了一些识别能力。
相比之下,YOLOv7-tiny的mAP指标为0.765,F1-Score为0.72,这些数值明显低于其他三个模型。其相对较低的性能可能是由于“tiny”版本为了实现更快的速度和更小的模型尺寸,大大减少了模型的复杂度,这可能影响了模型捕捉细节和学习高级特征的能力。这些结果表明,虽然模型简化有利于计算效率,但可能会以牺牲准确性为代价。
通过这一实验,我们可以得出结论,YOLOv6n和YOLOv8n在精度上的优势表明了其在多目标检测任务上的强大性能,特别适合需要高准确性的场景。同时,YOLOv5nu提供了一个在速度和准确性之间平衡的选项,而YOLOv7-tiny则是一个更适合需要快速处理的低资源环境的解决方案。这些发现不仅增强了我们对不同YOLO版本性能差异的理解,而且为未来在特定应用场景中选择合适模型提供了有价值的参考。
6. 系统设计与实现
6.1 系统架构概览
系统架构主要包括以下几个关键组件:模型管理、数据处理、UI交互和日志记录。每个组件都承担着系统运行中的特定职责,共同确保了系统的高效和稳定运行。
(一)模型管理
这是系统的第一步,负责对输入的图像数据进行预处理,包括图像的缩放、归一化等操作,以适应模型的输入要求。在我们的代码中,这部分功能主要通过YOLOv8v5Detector类
中的preprocess
方法实现。
(二)数据处理
在数据准备阶段,我们首先需要收集大量的多目标图像数据。通过Label_list
类别标签列表定义了我们需要识别的多目标类型。每种类型的器件都需要进行详细的标注,包括器件的边界框、类型等信息。
数据预处理则是通过YOLOv8v5Detector
类中的preprocess
方法完成的。这个方法将对输入的图像进行尺寸调整、归一化等操作,确保图像数据满足模型训练和识别的需求。
(三) UI交互
我们利用Streamlit库构建了一个简洁直观的用户界面,允许用户轻松上传图片或视频文件,选择摄像头输入,以及调整模型参数等操作。Detection_UI
类的setup_sidebar
方法负责侧边栏的布局设计,提供了模型设置、摄像头配置、识别项目设置等多个选项供用户选择。
(四)日志记录
为了提高用户体验,系统提供了丰富的交互功能,例如允许用户通过侧边栏选择摄像头、上传文件、设置模型参数等。同时,系统还提供了日志记录功能,LogTable
类负责记录检测日志,并支持将结果导出为CSV文件,方便用户进行后续分析。
通过上述设计,我们的系统能够有效地处理多目标图像中的目标检测任务,为用户提供直观、实用的检测工具。我们将继续优化系统架构,引入更先进的技术,以提高检测的准确性和系统的可用性。
6.2 系统流程
针对基于YOLOv8/v7/v6/v5的多目标检测系统,下面我们将深入探讨系统的具体工作流程,并结合代码中的类和方法进行详细说明:
-
系统初始化(
__init__
)- 通过
Detection_UI
类的构造函数__init__
进行系统参数的初始化,包括模型类型、置信度阈值、IOU阈值、选定的摄像头、文件类型等。然后调用setup_page方法来设置Streamlit页面的布局,如页面标题、图标等。
- 通过
-
用户配置
- 用户通过侧边栏(
setup_sidebar
方法中实现)进行配置,可以选择模型类型、调整检测参数(如置信度conf_threshold
和IOU阈值iou_threshold
),并选择输入源(上传的文件或摄像头)。
- 用户通过侧边栏(
-
文件上传与摄像头选择
- 用户可以通过侧边栏上传图片或视频文件,或选择系统中已连接的摄像头。系统通过
uploaded_file
或selected_camera
变量处理用户的选择。
- 用户可以通过侧边栏上传图片或视频文件,或选择系统中已连接的摄像头。系统通过
-
图像处理与目标检测(
frame_process
)- 对于实时摄像头输入,系统不断读取帧,调用
process_camera_or_file
方法进行处理。 - 对于文件上传,根据文件类型(图片或视频),分别处理。
- 在处理过程中,会使用
frame_process
方法对捕获的帧进行预处理、模型推理和后处理,识别出图像中的多目标佩戴情况。
- 对于实时摄像头输入,系统不断读取帧,调用
-
结果展示与日志记录
- 所有检测结果会通过
LogTable
类记录在日志中,并提供导出为CSV文件的功能,方便用户后续分析和报告制作。
- 所有检测结果会通过
-
用户交互与反馈
- 系统提供了丰富的用户交互功能,如开始/停止检测按钮、显示模式选择、目标过滤等,允许用户根据需要自定义检测过程和结果展示。
-
结束与清理
- 用户操作完成后,可以通过点击UI中的导出按钮(在
setupMainWindow
中处理)导出检测结果日志。系统也会在结束时自动进行资源释放和清理工作。
- 用户操作完成后,可以通过点击UI中的导出按钮(在
整个多目标检测系统的流程设计充分考虑了用户操作的便捷性和检测过程的高效性。通过这一系列精心设计的步骤,系统能够实现对多目标的快速、准确检测,满足工业检测的需求。
代码下载链接
如果您希望获取博客中提及的完整资源包,包含测试图片、视频、Python文件(*.py)、网页配置文件、训练数据集、代码及界面设计等,可访问博主在面包多平台的上传内容。相关的博客和视频资料提供了所有必要文件的下载链接,以便一键运行。完整资源的预览如下图所示:
资源包中涵盖了你需要的训练测试数据集、训练测试代码、UI界面代码等完整资源,完整项目文件的下载链接可在下面的视频简介中找到➷➷➷
演示及项目介绍视频:https://www.bilibili.com/video/BV1op421C778/
完整安装运行教程:
这个项目的运行需要用到Anaconda和Pycharm两个软件,下载到资源代码后,您可以按照以下链接提供的详细安装教程操作即可运行成功,如仍有运行问题可私信博主解决:
- Pycharm和Anaconda的安装教程:https://deepcode.blog.csdn.net/article/details/136639378;
软件安装好后需要为本项目新建Python环境、安装依赖库,并在Pycharm中设置环境,这几步采用下面的教程可选在线安装(pip install直接在线下载包)或离线依赖包(博主提供的离线包直接装)安装两种方式之一:
- Python环境配置教程:https://deepcode.blog.csdn.net/article/details/136639396(2,3方法可选一种);
- 离线依赖包的安装指南:https://deepcode.blog.csdn.net/article/details/136650641(2,3方法可选一种);
如使用离线包方式安装,请下载离线依赖库,下载地址:https://pan.baidu.com/s/1uHbU9YzSqN0YP_dTHBgpFw?pwd=mt8u (提取码:mt8u)。
7. 结论与未来工作
通过深入研究并实践了基于YOLOv8/v7/v6/v5的深度学习模型在多目标检测领域的应用,我们成功开发了一个结合了这些先进算法的多目标检测系统。本系统通过对YOLO系列多个版本的模型进行细致的比较和优化,不仅提升了多目标检测的准确率和实时性,还利用Streamlit创建了一个直观、美观且易于使用的Web应用,使得从专业研究人员到日常用户都能轻松地进行目标检测,展示了该技术在实际应用中的巨大潜力。
经过严格的实验验证,我们的系统在准确性和处理速度上均达到了令人满意的水平。此外,我们提供了一整套的解决方案,包括数据集处理、模型训练与预测的代码,以及基于Streamlit的界面设计和实现细节,为未来的研究者和开发者提供了丰富的参考资源。尽管已经取得了显著的成果,多目标检测作为一个复杂多变的领域,仍然存在着许多挑战和改进的空间。未来的工作计划从以下几个方向进行探索:
-
模型优化与更新:我们将继续探索更加深入的网络结构和优化策略,如神经网络架构搜索(NAS)技术,以提升模型的性能和效率。
-
多模态融合:考虑到多模态信息(如语音、文本)在理解复杂场景中的重要性,我们计划采用多模态学习方法,以实现更全面的目标检测和识别。
-
跨域适应性:为了提高模型在不同背景、不同条件下的泛化能力,将研究跨文化、跨年龄组的目标检测,通过领域自适应技术来实现。
-
用户交互体验:我们将进一步优化系统的用户界面和交互设计,使其更加人性化和智能化,满足更广泛用户群体的需求。
-
实际应用拓展:探索基于YOLO的多目标检测技术在更多实际应用场景(如在线教育、远程会议、智能客服等)中的潜在应用,发挥其最大的社会和经济价值。
总之,随着技术的不断进步和应用领域的不断拓展,基于YOLO的多目标检测技术正迎来快速发展的黄金时期。我们相信,在不久的将来,这项技术将在人机交互、社会安全、医疗健康等更多领域发挥出更大的作用,为社会带来更深远的影响。
Ahmad T, Ma Y, Yahya M, et al. Object detection through modified YOLO neural network[J]. Scientific Programming, 2020, 2020: 1-10. ↩︎
Zhu X, Lyu S, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 2778-2788. ↩︎
Bist R B, Subedi S, Yang X, et al. A novel YOLOv6 object detector for monitoring piling behavior of cage-free laying hens[J]. AgriEngineering, 2023, 5(2): 905-923. ↩︎
Zhao H, Zhang H, Zhao Y. Yolov7-sea: Object detection of maritime uav images based on improved yolov7[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2023: 233-238. ↩︎
Aboah A, Wang B, Bagci U, et al. Real-time multi-class helmet violation detection using few-shot data sampling technique and yolov8[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 5349-5357. ↩︎