常见概率分布及其意义

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/louzhangpeng/article/details/83589611

离散型概率分布

二项分布

  • 设在一个试验中事件 A 发生的概率是 pp,则独立重复 nn 次试验后,事件 A 发生 ii 次的概率为

pi=B(n,p)=(ni)pi(1p)ni,i=0,1,...,np_i = B(n, p) = \left(\begin{matrix} n \\ i \end{matrix}\right)p^i(1-p)^{n-i}, \quad i = 0, 1, ..., n

超几何分布

  • NN 个产品中有废品 MM 个,则从中随机抽取 nn 个样品中恰有 mm 个废品的概率为

P(X=m)=(Mm)(NMnm)/(Nn)P(X = m) = \left(\begin{matrix} M \\ m \end{matrix}\right)\left(\begin{matrix} N - M \\ n - m \end{matrix}\right)/\left(\begin{matrix} N \\ n \end{matrix}\right)

几何分布

  • 产品的废品率为 pp,从这批产品中逐一抽取样品,直到抽到第一个废品,记此时已抽出的合格品个数为 XX,则

P(X=i)=p(1p)i,i=0,1,...P(X = i) = p(1-p)^i, \quad i = 0, 1, ...

泊松分布

  • 泊松分布多用于描述在一定的时间或空间内出现的事件个数的分布

P(X=i)P(λ)=eλλii!P(X = i) \sim P(\lambda) = \frac{e^{-\lambda}\lambda^i}{i!}

  • 泊松分布可看做二项分布的极限,当 nn 很大,pp 很小,且 np=λnp = \lambda 不大时,可以用泊松分布近似二项分布

连续型概率分布

均匀分布

f(x)=1ba,axbf(x) = \frac{1}{b-a}, \quad a\le x\le b

正态分布

N(μ,σ2)=12πσe(xμ)22σ2N(\mu, \sigma^2) = \frac { 1 }{ \sqrt { 2\pi } \sigma } { e }^{ -\frac { { \left( x-\mu \right) }^{ 2 } }{ 2{ \sigma }^{ 2 } } }

中心极限定理说明很多个独立变量的和近似服从正态分布

标准正态分布

N(0,1)=12πex22N(0, 1) = \frac { 1 }{ \sqrt { 2\pi } } { e }^{ -\frac { { x }^{ 2 } }{ 2 } }

指数分布

f(x)=λeλx,x>0f(x) = \lambda e^{-\lambda x}, \quad x > 0

展开阅读全文

没有更多推荐了,返回首页