几种概率分布(伯努利分布、二项分布、泊松分布、均匀分布、正态分布、指数分布、伽马分布)

本文介绍了概率论中的几种基本分布,包括伯努利分布、二项分布、泊松分布、均匀分布、正态分布和指数分布。伯努利分布是0-1分布,二项分布是多次伯努利试验成功的次数分布,当试验次数趋于无穷大时,二项分布可近似为泊松分布或正态分布。泊松分布描述随机事件发生的次数,正态分布则是一个非常常见的连续分布。指数分布用于表示连续随机事件的时间间隔。此外,还提到了伽马分布,它是一种连续概率分布,具有形状和尺度参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

伯努利分布(Bernoulli Distribution)

又名两点分布或者0-1分布,是一个离散型概率分布,为纪念瑞士科学家雅各布·伯努利而命名。若伯努利试验成功,则伯努利随机变量取值为1。若伯努利试验失败,则伯努利随机变量取值为0。记其成功概率为 p ( 0 ≤ p ≤ 1 ) p (0\le p \le 1) p(0p1),失败概率为 q = 1 − p q=1-p q=1p

二项分布(Binomial Distribution)

二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n = 1时,二项分布就是伯努利分布。
在这里插入图片描述
参考文献

二项分布什么时候趋近于泊松分布,什么时候趋近于正态分布?
二项分布有两个参数,一个 n 表示试验次数,一个 p 表示一次试验成功概率。
现在考虑一列二项分布,其中试验次数 n 无限增加,而 p 是 n 的函数。
如果 np 存在有限极限 λ \lambda λ,则这列二项分布就趋于参数为 λ \lambda λ 的 泊松分布。反之,如果 np 趋于无限大(如 p 是一个定值),则根据德莫佛-拉普拉斯(De’Moivre-Laplace)中心极限定理,这列二项分布将趋近于正态分布。

泊松分布(Poisson Distribution)

泊松分布的概率密度函数是
f ( x ∣ λ ) = λ x x ! e − λ , x = 0 , 1 , 2 , . . . , ∞ . f(x|\lambda)=\frac{\lambda ^x}{x!}e^{-\lambda}, \quad x=0,1,2,...,\infty. f(xλ)=x!λxeλ,x=0,1,2,...,.

matlab生成poison distribution

均匀分布(Uniform Distribution)

又分为离散型均匀分布和连续型均匀分布

离散型均匀分布

在统计学及概率理论中,离散型均匀分布是离散型概率分布,其中有限个数值拥有相同的概率。离散型均匀分布的另一种说法为“有限个结果,各结果的概率均相同”。
在这里插入图片描述
参考文献

连续型均匀分布

只要概率与区间长度成比例,随机变量就是均匀分布。
均匀概率密度函数:
f ( x ) = { 1 a − b , a ≤ x ≤ b 0 , others f(x)=\left \{ \begin{aligned} &\frac{1}{a-b}, \quad a\le x\le b \\ &0, \quad \qquad \text{others} \end{aligned} \right. f(x)=ab1,axb0,others

在这里插入图片描述

正态分布(Normal Distribution)

又名高斯分布(英语:Gaussian distribution)、正规分布,是一个非常常见的连续概率分布。

其概率密度函数为:
f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=σ2π 1e2σ2(xμ)2

指数分布(Exponential Distribution)

指数分布(英语:Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、电话打进客服中心的时间间隔、中文维基百科新条目出现的时间间隔、机器的寿命等。
首先注意到,与泊松分布相比,其最大的差异就是指数分布是针对连续随机变量定义,即时间这个变量。时间必须是连续的。而泊松分布是针对随机事件发生次数定义的,发生次数是离散的。
指数分布的概率密度函数为:
f ( x ∣ λ ) = λ e − λ x , x ∈ [ 0 , + ∞ ) f(x|\lambda)=\lambda e^{-\lambda x}, \quad x\in [0,+\infty) f(xλ)=λeλx,x[0,+)在这里插入图片描述
好的理解

伽马分布(Gamma distribution)

是统计学的一种连续概率分布。伽玛分布中的参数α,称为形状参数,β称为尺度参数。其概率密度函数为:
f ( x ) = x α − 1 e − 1 β x β α Γ ( α ) , x > 0 f(x)=\frac{x^{\alpha-1}e^{-\frac{1}{\beta}x}}{\beta^{\alpha}\Gamma(\alpha)}, \quad x>0 f(x)=βαΓ(α)xα1eβ1x,x>0

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值