Java实现牛顿插值

在这里插入图片描述

public class Test {
    static double[][] format;

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner in = new Scanner(System.in);
        System.out.print("输入插入总点数:");
        int n=in.nextInt();//插入点总数
        double[][] xy=new double[2][n];//二维数组来存储x和y
        for(int j=0;j<n;j++) {
            System.out.print("输入第"+(j+1)+"个点的x:");
            xy[0][j]=in.nextDouble();//第0行放各点的x值
            System.out.print("输入第"+(j+1)+"个点的y:");
            xy[1][j]=in.nextDouble();//第1行放各点的y值
        }
        creatformat(xy, n);
        System.out.println("输入计算几个点:");
        int v=in.nextInt();//所求点的总数
        for(int i=0;i<v;i++) {
            System.out.println("输入x= ");
            double x=in.nextDouble();
            System.out.print("f("+x+")≈"+"Nn("+x+")"+"=");
            System.out.printf("%.5f", Nn(xy, n, x));
            System.out.println();
        }
    }


    static void creatformat(double[][] xy,int n) {
        format=new double[n-1][n-1];
        for(int i=0;i<n-1;i++) {
            for(int j=0;j<n-1-i;j++) {
                if(i==0) {
                    format[i][j]=(xy[1][j]-xy[1][j+1])/(xy[0][j]-xy[0][j+1]);
                }
                else{
                    format[i][j]=(format[i-1][j]-format[i-1][j+1])/(xy[0][j]-xy[0][j+i+1]);
                }
            }
        }
    }

    static double Nn(double[][] xy,int n,double x) {
        //牛顿插值公式
        double sum=xy[1][0];//求和的初始值为f(X0)
        for(int i=0;i<n-1;i++) {
            double c=1;
            for(int j=0;j<i+1;j++) {
                c=(x-xy[0][j])*c;
            }
            sum=sum+format[i][0]*c;
        }
        return sum;
    }
}

运行结果得:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苗半里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值