在一个无限大的二维网格上,你站在(a,b)点上,下一步你可以移动到(a + b, b), (a, a + b), (a - b, b), 或者 (a, a - b)这4个点。
给出起点坐标(a,b),以及终点坐标(x,y),问你能否从起点移动到终点。如果可以,输出"Yes",否则输出"No"。
例如:(1,1) 到 (2,3),(1,1) -> (2,1) -> (2,3)。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 5000)
第2 - T + 1行:每行4个数,a, b, x, y,中间用空格分隔(1 <= a, b, x, y <= 10^18)
Output
输出共T行,每行对应1个结果,如果可以,输出"Yes",否则输出"No"。
Input示例
2
1 1 2 3
2 1 2 3
Output示例
Yes
Yes
思路:从(a,b)可以到达gcd(x,y)与gcd(a,b)的(x,y)点。这个结论其实和更相减损法差不多。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
LL gcd(LL a,LL b){
return b==0 ? a: gcd(b,a%b);
}
int main(){
int t;
scanf("%d",&t);
while(t--){
LL a,b;
LL x,y;
scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
if(gcd(a,b)==gcd(x,y)){
puts("Yes");
}
else puts("No");
}
return 0;
}